Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 9 Οκτωβρίου 2017

Magnetically Controlled Growth-Factor-Immobilized Multilayer Cell Sheets for Complex Tissue Regeneration

Abstract

The scaffold-free cell-sheet technique plays a significant role in stem-cell-based regeneration. Furthermore, growth factors are known to direct stem cell differentiation and enhance tissue regeneration. However, the absence of an effective means to incorporate growth factors into the cell sheets hinders further optimization of the regeneration efficiency. Here, a novel design of magnetically controlled "growth-factor-immobilized cell sheets" is reported. A new Fe3O4 magnetic nanoparticle (MNP) coated with nanoscale graphene oxide (nGO@Fe3O4) is developed to label stem cells and deliver growth factors. First, the nGO@Fe3O4 MNPs can be easily swallowed by dental-pulp stem cells (DPSCs) and have no influence on cell viability. Thus, the MNP-labeled cells can be organized via magnetic force to form multilayered cell sheets in different patterns. Second, compared to traditional Fe3O4 nanoparticles, the graphene oxide coating provides plenty of carboxyl groups to bind and deliver growth factors. Therefore, with these nGO@Fe3O4 MNPs, bone-morphogenetic-protein-2 (BMP2) is successfully incorporated into the DPSCs sheets to induce more bone formation. Furthermore, an integrated osteochondral complex is also constructed using a combination of DPSCs/TGFβ3 and DPSCs/BMP2. All these results demonstrate that the new cell-sheet tissue-engineering approach exhibits promising potential for future use in regenerative medicine.

Thumbnail image of graphical abstract

A novel design for "growth-factor-immobilized cell sheets" formed under the control of magnetic force is introduced to optimize regeneration efficiency, based on a new nanoscale graphene-oxide-coated Fe3O4 magnetic nanoparticle. The nanocomposites provide a novel magnetically controlled vehicle for delivery of both stem cells and growth factors, and they exhibit promising potential for future use in regenerative medicine.



http://ift.tt/2wINs5c

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.