Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 31 Αυγούστου 2017

The Functional Response of Mesenchymal Stem Cells to Electron-Beam Patterned Elastomeric Surfaces Presenting Micrometer to Nanoscale Heterogeneous Rigidity

Cells directly probe and respond to the physicomechanical properties of their extracellular environment, a dynamic process which has been shown to play a key role in regulating both cellular adhesive processes and differential cellular function. Recent studies indicate that stem cells show lineage-specific differentiation when cultured on substrates approximating the stiffness profiles of specific tissues. Although tissues are associated with a range of Young's modulus values for bulk rigidity, at the subcellular level, tissues are comprised of heterogeneous distributions of rigidity. Lithographic processes have been widely explored in cell biology for the generation of analytical substrates to probe cellular physicomechanical responses. In this work, it is shown for the first time that that direct-write e-beam exposure can significantly alter the rigidity of elastomeric poly(dimethylsiloxane) substrates and a new class of 2D elastomeric substrates with controlled patterned rigidity ranging from the micrometer to the nanoscale is described. The mechanoresponse of human mesenchymal stem cells to e-beam patterned substrates was subsequently probed in vitro and significant modulation of focal adhesion formation and osteochondral lineage commitment was observed as a function of both feature diameter and rigidity, establishing the groundwork for a new generation of biomimetic material interfaces.

Thumbnail image of graphical abstract

Cellular rigidity-sensing mechanisms in response to discrete areas of modulated rigidity are not understood. Here, a new class of biomimetic surfaces comprising micro to nanopatterned rigidity by focused electron beam exposure is described. Heterogeneous rigidity substrates induced significant changes to focal adhesion colocalization and osteochondral function in mesenchymal stem cell populations as a function of spot size and spot rigidity.



http://ift.tt/2wnuVxE

Half-Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dual-Native-Defects Engineering

Two-dimensional transition metal dichalcogenides (TMDs) have been regarded as one of the best nonartificial low-dimensional building blocks for developing spintronic nanodevices. However, the lack of spin polarization in the vicinity of the Fermi surface and local magnetic moment in pristine TMDs has greatly hampered the exploitation of magnetotransport properties. Herein, a half-metallic structure of TMDs is successfully developed by a simple chemical defect-engineering strategy. Dual native defects decorate titanium diselenides with the coexistence of metal-Ti-atom incorporation and Se-anion defects, resulting in a high-spin-polarized current and local magnetic moment of 2D Ti-based TMDs toward half-metallic room-temperature ferromagnetism character. Arising from spin-polarization transport, the as-obtained T-TiSe1.8 nanosheets exhibit a large negative magnetoresistance phenomenon with a value of −40% (5T, 10 K), representing one of the highest negative magnetoresistance effects among TMDs. It is anticipated that this dual regulation strategy will be a powerful tool for optimizing the intrinsic physical properties of TMD systems.

Thumbnail image of graphical abstract

A dual-native-defects (Ti atom self-doping and Se defects) engineering strategy is proposed to introduce a spin polarized current and local magnetic moment into 2D nonmagnetic TiSe2, bringing half-metallic behavior with larger negative magnetoresistance.



http://ift.tt/2iMRqHo

Highly Concentrated, Ultrathin Nickel Hydroxide Nanosheet Ink for Wearable Energy Storage Devices

Solution-based techniques are considered as a promising strategy for scalable fabrication of flexible electronics owing to their low-cost and high processing speed. The key to the success of these techniques is dominated by the ink formulation of active nanomaterials. This work successfully prepares a highly concentrated two dimensional (2D) crystal ink comprised of ultrathin nickel hydroxide (Ni(OH)2) nanosheets with an average lateral size of 34 nm. The maximum concentration of Ni(OH)2 nanosheets in water without adding any additives reaches as high as 50 mg mL−1, which can be printed on arbitrary substrates to form Ni(OH)2 thin films. As a proof-of-concept application, Ni(OH)2 nanosheet ink is coated on commercialized carbon fiber yarns to fabricate wearable energy storage devices. The thus-fabricated hybrid supercapacitors exhibit excellent flexibility with a capacitance retention of 96% after 5000 bending–unbending cycles, and good weavability with a high volumetric capacitance of 36.3 F cm−3 at a current density of 0.4 A cm−3, and an energy density of 11.3 mWh cm−3 at a power density of 0.3 W cm−3. As a demonstration of practical application, a red light emitting diode can be lighted up by three hybrid devices connected in series.

Thumbnail image of graphical abstract

A highly concentrated 2D crystal ink comprised of ultrathin Ni(OH)2 nanosheets with an average lateral size of 34 nm is prepared. The Ni(OH)2 nanosheet ink can be printed on commercialized carbon fiber yarn for wearable energy storage devices. The thus-fabricated hybrid supercapacitors exhibit good flexibility and weavability with much improved capacitance and energy density.



http://ift.tt/2wnp4Zb

Superenhancers Drive Neuroblastoma Differentiation States [Neuroblastoma]

Superenhancer-associated transcriptional networks promote neuroblastoma heterogeneity.



http://ift.tt/2eu6zwb

Transcription Elongation Factors Are Potential Targets in Glioblastoma [Glioblastoma]

JMJD6 promotes transcription pause-release and elongation and glioblastoma cell survival in vivo.



http://ift.tt/2gnEF1I

Epacadostat Shows Value in Two SCCHN Trials [News in Brief]

In the ECHO-202/KEYNOTE-037 and ECHO-204 trials reported at the 2017 Annual Meeting of the American Society of Clinical Oncology, patients with squamous cell carcinoma of the head and neck responded well to the combinations of epacadostat plus pembrolizumab and epacadostat plus nivolumab. An IDO1 inhibitor, epacadostat also demonstrated promising activity in combination with the PD-1 checkpoint inhibitors in other solid tumors, including melanoma, urothelial carcinoma, renal cell carcinoma, and non–small cell lung cancer.



http://ift.tt/2eJEgqs

GPX4 Blocks Ferroptosis to Drive the Survival of Chemoresistant Cells [Drug Resistance]

The lipid peroxidase GPX4 is critical for the survival of therapy-resistant ZEB1+ cancer cells.



http://ift.tt/2guvC2D

New Biomarker Identified for PDAC [News in Brief]

A new study suggests that the protein THBS2 could lead to early detection of pancreatic ductal adenocarcinoma. By testing for THBS2 and another marker, CA19-9, researchers identified blood samples from patients with the disease with 98% specificity and 87% sensitivity.



http://ift.tt/2eJJRNk

Integrative Genomics Characterize Medulloblastoma Subtypes [Medulloblastoma]

Integrative genomic analysis characterized the genomic landscapes of medulloblastoma subtypes.



http://ift.tt/2gtPoeR

Savolitinib Heads for Phase III Trial in PRCC [News in Brief]

A phase II trial of savolitinib, a MET inhibitor, found that the drug induced partial responses in some patients with papillary renal cell carcinoma and was well tolerated, prompting drug makers Chi-Med and AstraZeneca to launch a phase III study.



http://ift.tt/2eJMTBo

Disrupting the APC-Asef Interaction Suppresses Cancer Cell Migration [Drug Design]

Structure-based design yields peptidomimetic APC–ARM pocket inhibitors that block Asef binding.



http://ift.tt/2guzsZG

New SNPs from Testicular Cancer GWAS [News in Brief]

Two new genome-wide association studies identify 30 new risk variants for testicular cancer. One study suggests that genes involved in transcription regulation during development and microtubule assembly promote development of the disease. The second study implicates genes involved in mitochondrial metabolism, germ cell maturation, and DNA damage repair.



http://ift.tt/2eJMSxk

Biallelic Germline Mutations in RFWD3 May Induce Fanconi Anemia [Fanconi Anemia]

The E3 ubiquitin ligase RFWD3 is mutated in a patient with Fanconi anemia lacking known Fanconi mutations.



http://ift.tt/2wnlLRK

Genomic Analysis Detects Recurrent Promoter Mutations in Breast Cancer [Breast Cancer]

Deep sequencing of 360 primary breast tumors identified 9 genes with recurrently mutated promoters.



http://ift.tt/2vPsq3K

CAMKII{gamma} Stabilizes MYC to Promote T-cell Lymphomagenesis [Lymphoma]

Inhibition of CAMKII reduces MYC protein levels, T-cell lymphomagenesis, and tumor burden in vivo.



http://ift.tt/2wn4HeC

Nivolumab Plus Ipilimumab Has Antitumor Activity in Metastatic RCC [Clinical Trials]

Nivolumab plus ipilimumab achieves durable responses and has manageable safety in metastatic RCC.



http://ift.tt/2vOs4uj

FOXA1-Dependent Enhancer Reprogramming Promotes Metastasis [Metastasis]

Recurrent enhancer changes accompany the metastatic transition in pancreatic cancer models.



http://ift.tt/2wnq9An

Discovery and Optimization of HKT288, a Cadherin-6-Targeting ADC for the Treatment of Ovarian and Renal Cancers [Research Articles]

Despite an improving therapeutic landscape, significant challenges remain in treating the majority of patients with advanced ovarian or renal cancer. We identified the cell–cell adhesion molecule cadherin-6 (CDH6) as a lineage gene having significant differential expression in ovarian and kidney cancers. HKT288 is an optimized CDH6-targeting DM4-based antibody–drug conjugate (ADC) developed for the treatment of these diseases. Our study provides mechanistic evidence supporting the importance of linker choice for optimal antitumor activity and highlights CDH6 as an antigen for biotherapeutic development. To more robustly predict patient benefit of targeting CDH6, we incorporate a population-based patient-derived xenograft (PDX) clinical trial (PCT) to capture the heterogeneity of response across an unselected cohort of 30 models—a novel preclinical approach in ADC development. HKT288 induces durable tumor regressions of ovarian and renal cancer models in vivo, including 40% of models on the PCT, and features a preclinical safety profile supportive of progression toward clinical evaluation.

Significance: We identify CDH6 as a target for biotherapeutics development and demonstrate how an integrated pharmacology strategy that incorporates mechanistic pharmacodynamics and toxicology studies provides a rich dataset for optimizing the therapeutic format. We highlight how a population-based PDX clinical trial and retrospective biomarker analysis can provide correlates of activity and response to guide initial patient selection for first-in-human trials of HKT288. Cancer Discov; 7(9); 1030–45. ©2017 AACR.

This article is highlighted in the In This Issue feature, p. 920



http://ift.tt/2vOKI5b

Analysis of Circulating Cell-Free DNA Identifies Multiclonal Heterogeneity of BRCA2 Reversion Mutations Associated with Resistance to PARP Inhibitors [Research Briefs]

Approximately 20% of metastatic prostate cancers harbor mutations in genes required for DNA repair by homologous recombination repair (HRR) such as BRCA2. HRR defects confer synthetic lethality to PARP inhibitors (PARPi) such as olaparib and talazoparib. In ovarian or breast cancers, olaparib resistance has been associated with HRR restoration, including by BRCA2 mutation reversion. Whether similar mechanisms operate in prostate cancer, and could be detected in liquid biopsies, is unclear. Here, we identify BRCA2 reversion mutations associated with olaparib and talazoparib resistance in patients with prostate cancer. Analysis of circulating cell-free DNA (cfDNA) reveals reversion mutation heterogeneity not discernable from a single solid-tumor biopsy and potentially allows monitoring for the emergence of PARPi resistance.

Significance: The mechanisms of clinical resistance to PARPi in DNA repair–deficient prostate cancer have not been described. Here, we show BRCA2 reversion mutations in patients with prostate cancer with metastatic disease who developed resistance to talazoparib and olaparib. Furthermore, we show that PARPi resistance is highly multiclonal and that cfDNA allows monitoring for PARPi resistance. Cancer Discov; 7(9); 999–1005. ©2017 AACR.

See related commentary by Domchek, p. 937.

See related article by Kondrashova et al., p. 984.

See related article by Goodall et al., p. 1006.

This article is highlighted in the In This Issue feature, p. 920



http://ift.tt/2wnyxQe

Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma [Research Briefs]

High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations.

Significance: Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. Cancer Discov; 7(9); 984–98. ©2017 AACR.

See related commentary by Domchek, p. 937.

See related article by Quigley et al., p. 999.

See related article by Goodall et al., p. 1006.

This article is highlighted in the In This Issue feature, p. 920



http://ift.tt/2vOJCX5

Do It Fast: Immediate Functional Testing of Membrane Pumps Expressed into Nanodiscs

Functional analysis of a large number of ion pumps and their variants is a time-consuming task and often retards research progress of this important class of proteins. The modus operandi is to heterologously overexpress the proteins into single-celled bacteria, yeast, or cell cultures and to purify by extraction from the membrane environment with the help of detergents and subsequent purification steps. The proteins are then subjected to biophysical investigations. In their recent work, Henrich et al.

http://ift.tt/2enQTXn

Mesenchymal Stromal Cell Therapy: After the Gold Rush.

No abstract available

http://ift.tt/2iMwXTp

Long-term Functioning of Allogeneic Islets in Subcutaneous Tissue Pretreated with a Novel Cyclic Peptide without Immunosuppressive Medication.

Background: There exists a need for a minimally invasive method of islet transplantation without immunosuppressive drugs for the treatment of type 1 diabetes. Methods: In diabetic ACI rats, an agarose rod containing the cyclic oligopeptide SEK-1005 (agarose-SEK rod) was implanted at 2 dorsal subcutaneous sites. Then these rods were removed, and 1500 islets isolated from F344 rats were transplanted into each of the pockets. Results: Ten days after implantation of agarose-SEK rods, vascularized pockets were present. Nonfasting blood glucose levels confirmed long-term survival of the allogeneic islet grafts, without immunosuppressive therapy, in 8 of 10 recipients. Flow cytometry and gene expression analyses were performed to investigate the mechanisms underlying graft acceptance. Agarose-SEK rod implantation led to the formation of granulomatous tissue containing regulatory T cells that suppressed immune reactions against the allogeneic islet grafts. Conclusions: These results indicate that the use of an agarose-SEK rod to prevascularize a subcutaneous site may be a useful method for achieving successful allogeneic islet transplantation without immunosuppression. Copyright (C) 2017 Wolters Kluwer Health, Inc. All rights reserved.

http://ift.tt/2enKHi6

Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood

Abstract
Bacterial colonization in infancy is considered crucial for the development of the immune system. Recently, there has been a drastic increase in childhood allergies in Japan. Therefore, we conducted a prospective study with 56 infants on the relationship between gut microbiota in the first year of life and the development of allergies during the first 3 years. In the lactation period, organic acid producers such as Leuconostoc, Weissella and Veillonella tended to be underrepresented in subjects who developed food allergies (FA, n = 14) within the first two years. In the weaning period, children in the FA group were highly colonized by unclassified Enterobacteriaceae and two Clostridium species closely related to Clostridium paraputrificum and C. tertium, and the whole tree phylogenetic diversity index was significantly lower in the FA group. All of these differences in the weaning period were statistically significant, even after adjusting for potential confounding factors. A higher abundance of unclassified Enterobacteriaceae was also found in the other allergic group (n = 15), whereas the two Clostridium species were highly specific to the FA group. The mode of action of these Clostridium species in childhood food allergies remains unknown, warranting further investigation.

http://ift.tt/2vsozNS

A case for the protection of saline and hypersaline environments: a microbiological perspective

Abstract
Saline and hypersaline environments are known for their unique geochemical properties, microbial populations and aesthetic appeal. Microbial activities and a spectrum of diversity seen in hypersaline environments are distinct with many novel species being identified and reported on a regular basis. Many distinguishing characteristics about the adaptation, morphology, evolutionary history, and potential environmental and biotechnological applications of these organisms are continually investigated. An abundance of interdisciplinary activities and opportunities exist to explore and understand the importance of these environments that potentially hold promising solutions for current and future global issues. Therefore, it is critical to conserve these unique environments and limit the damage inflicted by anthropogenic influences. Increased salinization due to water diversions, undesired freshening, extensive mineral extraction, sewage effluents, pollution due to agricultural runoff and industrial processes, urbanization, and global climate change are factors negatively affecting hypersaline lakes and their surrounding environments. If these harmful effects continue to proceed at the current or even accelerated rates, irrevocable consequences for these environments will occur, resulting in the loss of potential opportunities to gain new knowledge of the biogeochemistry as well as beneficial microbial populations closely associated with these unique and interesting environments.

http://ift.tt/2wrNFuf

Impaired synaptic function is linked to cognition in Parkinson's disease

Abstract

Objective

Cognitive impairment is frequent in Parkinson's disease, but the underlying mechanisms are insufficiently understood. Because cortical metabolism is reduced in Parkinson's disease and closely associated with cognitive impairment, and CSF amyloid-β species are reduced and correlate with neuropsychological performance in Parkinson's disease, and amyloid-β release to interstitial fluid may be related to synaptic activity; we hypothesize that synapse dysfunction links cortical hypometabolism, reduced CSF amyloid-β, and presynaptic deposits of α-synuclein. We expect a correlation between hypometabolism, CSF amyloid-β, and the synapse related-markers CSF neurogranin and α-synuclein.

Methods

Thirty patients with mild-to-moderate Parkinson's disease and 26 healthy controls underwent a clinical assessment, lumbar puncture, MRI, 18F-fludeoxyglucose-PET, and a neuropsychological test battery (repeated for the patients after 2 years).

Results

All subjects had CSF amyloid-β 1-42 within normal range. In Parkinson's disease, we found strong significant correlations between cortical glucose metabolism, CSF Aβ, α-synuclein, and neurogranin. All PET CSF biomarker-based cortical clusters correlated strongly with cognitive parameters. CSF neurogranin levels were significantly lower in mild-to-moderate Parkinson's disease compared to controls, correlated with amyloid-β and α-synuclein, and with motor stage. There was little change in cognition after 2 years, but the cognitive tests that were significantly different, were also significantly associated with cortical metabolism. No such correlations were found in the control group.

Interpretation

CSF Aβ, α-synuclein, and neurogranin concentrations are related to cortical metabolism and cognitive decline. Synaptic dysfunction due to Aβ and α-synuclein dysmetabolism may be central in the evolution of cognitive impairment in Parkinson's disease.



http://ift.tt/2gtGw8N

Castor oil as a natural alternative to labor induction: A retrospective descriptive study

Publication date: Available online 31 August 2017
Source:Women and Birth
Author(s): Andrea L. DeMaria, Beth Sundstrom, Grace E. Moxley, Kendall Banks, Ashlan Bishop, Lesley Rathbun
AimTo describe birthing outcomes among women who consumed castor oil cocktail as part of a freestanding birth center labor induction protocol.MethodsDe-identified data from birth logs and electronic medical records were entered into SPSS Statistics 22.0 for analysis for all women who received the castor oil cocktail (n=323) to induce labor between January 2008 and May 2015 at a birth center in the United States. Descriptive statistics were analyzed for trends in safety and birthing outcomes.ResultsOf the women who utilized the castor oil cocktail to stimulate labor, 293 (90.7%) birthed vaginally at the birth center or hospital. The incidence of maternal adverse effects (e.g., nausea, vomiting, extreme diarrhea) was less than 7%, and adverse effects of any kind were reported in less than 15% of births. An independent sample t-test revealed that parous women were more likely to birth vaginally at the birth center after using the castor oil cocktail than their nulliparous counterparts (p<.010), while gestational age (p=.26), woman's age (p=.23), and body mass index (p=.28) were not significantly associated.ConclusionsNearly 91% of women in the study who consumed the castor oil cocktail to induce labor were able to give birth vaginally with little to no maternal or fetal complications. Findings indicate further research is needed to compare the safety and effectiveness of natural labor induction methodologies, including castor oil, to commonly used labor induction techniques in a prospective study or clinical trial.



http://ift.tt/2wWKXjH

Monitoring postpartum haemorrhage in Australia: Opportunities to improve reporting

Publication date: Available online 31 August 2017
Source:Women and Birth
Author(s): Margaret M. Flood, Wendy E. Pollock, Susan J. McDonald, Mary-Ann Davey
ProblemThe rate and severity of postpartum haemorrhage (PPH) are increasing, according to research reports and clinical anecdote, causing a significant health burden for Australian women giving birth. However, reporting a national Australian rate is not possible due to inconsistent reporting of PPH.BackgroundClinician concerns about the incidence and severity of PPH are growing. Midwives contribute perinatal data on every birth, yet published population-based data on PPH seems to be limited. What PPH information is contributed? What data are publicly available? Do published data reflect the PPH concerns of clinicians?AimTo examine routine public reporting on PPH across Australia.MethodsWe systematically analysed routine, publicly reported data on PPH published in the most recent perinatal data for each state, territory and national report (up to and including October 2016). We extracted PPH data on definitions, type and method of data recorded, markers of severity, whether any analyses were done and whether any trends or concerns were noted.FindingsPPH data are collected by all Australian states and territories however, definitions, identification method and documentation of data items vary. Not all states and territories published PPH rates; those that did ranged from 3.3% to 26.5% and were accompanied by minimal reporting of severity and possible risk factors. Whilst there are plans to include PPH as a mandatory reporting item, the timeline is uncertain.ConclusionsRoutinely published PPH data lack nationally consistent definitions and detail. All states and territories are urged to prioritise the adoption of nationally recommended PPH items.



http://ift.tt/2xCvHFx

HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer

Purpose: Resistance to anti-HER2 therapies in HER2+ breast cancer can occur through activation of alternative survival pathways or reactivation of the HER signaling network. Here we employed BT474 parental and treatment-resistant cell line models to investigate a mechanism by which HER2+ breast cancer can reactivate the HER network under potent HER2-targeted therapies.

Experimental Design: Resistant derivatives to lapatinib (L), trastuzumab (T), or the combination (LR/TR/LTR) were developed independently from two independent estrogen receptor ER+/HER2+ BT474 cell lines (AZ/ATCC). Two derivatives resistant to the lapatinib-containing regimens (BT474/AZ-LR and BT474/ATCC-LTR lines) that showed HER2 reactivation at the time of resistance were subjected to massive parallel sequencing and compared with parental lines. Ectopic expression and mutant-specific siRNA interference were applied to analyze the mutation functionally. In vitro and in vivo experiments were performed to test alternative therapies for mutant HER2 inhibition.

Results: Genomic analyses revealed that the HER2L755S mutation was the only common somatic mutation gained in the BT474/AZ-LR and BT474/ATCC-LTR lines. Ectopic expression of HER2L755S induced acquired lapatinib resistance in the BT474/AZ, SK-BR-3, and AU565 parental cell lines. HER2L755S-specific siRNA knockdown reversed the resistance in BT474/AZ-LR and BT474/ATCC-LTR lines. The HER1/2–irreversible inhibitors afatinib and neratinib substantially inhibited both resistant cell growth and the HER2 and downstream AKT/MAPK signaling driven by HER2L755S in vitro and in vivo.

Conclusions: HER2 reactivation through acquisition of the HER2L755S mutation was identified as a mechanism of acquired resistance to lapatinib-containing HER2-targeted therapy in preclinical HER2-amplified breast cancer models, which can be overcome by irreversible HER1/2 inhibitors. Clin Cancer Res; 23(17); 5123–34. ©2017 AACR.



http://ift.tt/2vOFgzj

The Novel Association of Circulating Tumor Cells and Circulating Megakaryocytes with Prostate Cancer Prognosis

Purpose: To develop an approach for the investigation of different subtypes of circulating tumor cells (CTC) and other cells to evaluate their potential prognostic value of prostate cancer.

Experimental Design: Malignancy of CTCs undergoing epithelial-to-mesenchymal transition (EMT) was confirmed by repeated FISH. Subgroups of CTCs in 81 patients with prostate cancer (43 castration resistant and 38 untreated localized) were correlated to disease aggressiveness parameters. AUC analysis was applied to compare the performance for metastasis prediction between serum PSA level alone and a combined risk score using both PSA and EMTing CTC count. Circulating megakaryocytes and cancer patient survival association was performed using Cox model.

Results: The majority of vimentin (VIM)+/CD45 cells were malignant, with genomic alterations in several genomic regions. The number of cytokeratin (CK)/VIM+/CD45 CTCs correlated with disease burden, tumor aggressiveness, and poorer survival. Meanwhile, CK+/VIM+/CD45 CTCs were associated with metastases better than other subtypes of CTCs in these limited samples. Combination of PSA level and the number of CK+/VIM+/CD45 CTCs enhanced the prediction of cancer metastases [AUC, 0.921; 95% confidence interval (CI), 0.858–0.985]. The number of circulating megakaryocytes was potentially associated with good patient survival in advanced prostate cancer (HR, 0.849; 95% CI, 0.628–1.146, per cell increase), and the difference between the number of mesenchymal CTCs and megakaryocytes strongly correlated to poor survival (HR, 10.17; 95% CI, 2.164–47.789, if score ≥2.0).

Conclusions: This CTC analysis approach and the potential association of megakaryocytes with cancer prognosis may greatly enhance our ability to investigate the cancer metastasis process and to predict/monitor cancer progression. Clin Cancer Res; 23(17); 5112–22. ©2017 AACR.



http://ift.tt/2wrIfPX

Retraction: Polymorphisms of the CYP1B1 Gene as Risk Factors for Human Renal Cell Cancer



http://ift.tt/2vwF8sL

mTOR Pathway Mutations and Response to Rapalogs in RCC--Letter



http://ift.tt/2wrHXIR

Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing

Purpose: To identify tumor-derived exosomal biomarkers that are able to discriminate between adenocarcinoma and squamous cell carcinoma (SCC) as a noninvasive method in the early diagnosis of non–small cell lung cancer (NSCLC).

Experimental Design: Tumor-derived exosomes from the plasma of early-stage NSCLC patients were isolated. Exosomal miRNA profiling of 46 stage I NSCLC patients and 42 healthy individuals was performed using miRNA-seq to identify and validate adenocarcinoma- and SCC-specific miRNAs. The diagnostic accuracy of select miRNAs was tested further with an additional 60 individuals.

Results: There were 11 and 6 miRNAs expressed at remarkably higher levels, 13 and 8 miRNAs expressed at lower levels in adenocarcinoma and SCC patients, respectively, compared with healthy volunteers. Distinct adenocarcinoma- and SCC-specific exosomal miRNAs were validated. The reliability of miRNA-seq data was verified with several demonstrated diagnostic potential miRNAs for NSCLC and other carcinomas, as reported in previous studies, such as let-7, miR-21, miR-24, and miR-486. The results indicated that miR-181-5p, miR-30a-3p, miR-30e-3p, and miR-361-5p were adenocarcinoma-specific, and miR-10b-5p, miR-15b-5p, and miR-320b were SCC-specific. The diagnostic accuracy of three combination miRNA panels was evaluated using an AUC value of 0.899, 0.936, and 0.911 for detecting NSCLC, adenocarcinoma, and SCC, respectively.

Conclusions: Tumor-derived exosomal miRNAs, adenocarcinoma-specific miR-181-5p, miR-30a-3p, miR-30e-3p and miR-361-5p, and SCC-specific miR-10b-5p, miR-15b-5p, and miR-320b were observed by next-generation sequencing, and their diagnostic accuracy were verified. These miRNAs may be promising and effective candidates in the development of highly sensitive, noninvasive biomarkers for early NSCLC diagnosis. Clin Cancer Res; 23(17); 5311–9. ©2017 AACR.



http://ift.tt/2vwvzKt

Unique and Novel Urinary Metabolomic Features in Malignant versus Benign Adrenal Neoplasms

Purpose: Adrenal incidentalomas must be differentiated from adrenocortical cancer (ACC). Currently, size, growth, and imaging characteristics determine the potential for malignancy but are imperfect. The aim was to evaluate whether urinary small molecules (<800 Da) are associated with ACC.

Experimental Design: Preoperative fasting urine specimens from patients with ACC (n = 19) and benign adrenal tumors (n = 46) were analyzed by unbiased ultraperformance liquid chromatography/mass spectrometry. Creatinine-normalized features were analyzed by Progenesis, SIMCA, and unpaired t test adjusted by FDR. Features with an AUC >0.8 were identified through fragmentation patterns and database searches. All lead features were assessed in an independent set from patients with ACC (n = 11) and benign adrenal tumors (n = 46) and in a subset of tissue samples from patients with ACC (n = 15) and benign adrenal tumors (n = 15) in the training set.

Results: Sixty-nine features were discovered and four known metabolites identified. Urinary creatine riboside was elevated 2.1-fold (P = 0.0001) in patients with ACC. L-tryptophan, N,N,N-trimethyl-L-lysine, and 3-methylhistidine were lower 0.33-fold (P < 0.0001), 0.56-fold (P < 0.0001), and 0.33-fold (P = 0.0003) in patients with ACC, respectively. Combined multivariate analysis of the four biomarkers showed an AUC of 0.89 [sensitivity 94.7% (confidence interval {CI}, 73.9%–99.1%), specificity 82.6% (CI, 68.6%–92.2%), PPV 69.2% (CI, 48.2%–85.6%), and NPV 97.4% (CI, 86.5%–99.6%)] for distinguishing ACC from benign tumors. Of the four, creatine riboside and four unknown features were validated. Creatine riboside, N,N,N-trimethyl-L-lysine, and two unknown features were elevated in ACC tumors.

Conclusions: There are unique urinary metabolic features in patients with ACC with some metabolites present in patient tumor samples. Urinary creatine riboside can differentiate benign adrenal neoplasms from ACC. Clin Cancer Res; 23(17); 5302–10. ©2017 AACR.



http://ift.tt/2wrZcty

Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes

Purpose: We sought to investigate whether B cell receptor immunoglobulin (BcR IG) stereotypy is associated with particular clinicobiological features among chronic lymphocytic leukemia (CLL) patients expressing mutated BcR IG (M-CLL) encoded by the IGHV4-34 gene, and also ascertain whether these associations could refine prognostication.

Experimental Design: In a series of 19,907 CLL cases with available immunogenetic information, we identified 339 IGHV4-34–expressing cases assigned to one of the four largest stereotyped M-CLL subsets, namely subsets #4, #16, #29 and #201, and investigated in detail their clinicobiological characteristics and disease outcomes.

Results: We identified shared and subset-specific patterns of somatic hypermutation (SHM) among patients assigned to these subsets. The greatest similarity was observed between subsets #4 and #16, both including IgG-switched cases (IgG-CLL). In contrast, the least similarity was detected between subsets #16 and #201, the latter concerning IgM/D-expressing CLL. Significant differences between subsets also involved disease stage at diagnosis and the presence of specific genomic aberrations. IgG subsets #4 and #16 emerged as particularly indolent with a significantly (P < 0.05) longer time-to-first-treatment (TTFT; median TTFT: not yet reached) compared with the IgM/D subsets #29 and #201 (median TTFT: 11 and 12 years, respectively).

Conclusions: Our findings support the notion that BcR IG stereotypy further refines prognostication in CLL, superseding the immunogenetic distinction based solely on SHM load. In addition, the observed distinct genetic aberration landscapes and clinical heterogeneity suggest that not all M-CLL cases are equal, prompting further research into the underlying biological background with the ultimate aim of tailored patient management. Clin Cancer Res; 23(17); 5292–301. ©2017 AACR.



http://ift.tt/2vwThX1

miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD

Purpose: Patients with ulcerative colitis are at increased risk for colorectal cancer, although mechanisms underlying neoplastic transformation are poorly understood. We sought to evaluate the role of microRNAs in neoplasia development in this high-risk population.

Experimental Design: Tissue from 12 controls, 9 ulcerative colitis patients without neoplasia, and 11 ulcerative colitis patients with neoplasia was analyzed. miRNA array analysis was performed and select miRNAs assayed by real-time PCR on the discovery cohort and a validation cohort. DNA methylation of miR-193a was assessed. Following transfection of miR-193a-3p, proliferation, IL17RD expression, and luciferase activity of the 3'UTR of IL17RD were measured. Tumor growth in xenografts as well as EGFR signaling were assessed in HCT116 cells expressing IL17RD with either a mutant 3' untranslated region (UTR) or wild-type (WT) 3'UTR.

Results: miR-31, miR-34a, miR-106b, and miR-193a-3p were significantly dysregulated in ulcerative colitis-neoplasia and adjacent tissue. Significant down-regulation of miR-193a-3p was also seen in an independent cohort of ulcerative colitis cancers. Changes in methylation of miR-193a or expression of pri-miR-193a were not observed in ulcerative colitis cancer. Transfection of miR-193a-3p resulted in decreased proliferation, and identified IL17RD as a direct target of miR-193a-3p. IL17RD expression was increased in ulcerative colitis cancers, and miR-193a-3p treatment decreased growth and EGFR signaling of HCT116 cells in xenografts expressing both IL17RD with WT 3'UTR compared with cells expressing IL17RD with mutant 3'UTR.

Conclusions: miR-193a-3p is downregulated in ulcerative colitis neoplasia, and its loss promotes carcinogenesis through upregulation of IL17RD. These findings provide novel insight into inflammation-driven colorectal cancer and could suggest new therapeutic targets in this high-risk population. Clin Cancer Res; 23(17); 5281–91. ©2017 AACR.



http://ift.tt/2wrYSek

Targeting the Wnt Pathway and Cancer Stem Cells with Anti-progastrin Humanized Antibodies as a Potential Treatment for K-RAS-Mutated Colorectal Cancer

Purpose: Patients with metastatic colorectal cancer suffer from disease relapse mainly due to cancer stem cells (CSC). Interestingly, they have an increased level of blood progastrin, a tumor-promoting peptide essential for the self-renewal of colon CSCs, which is also a direct β-catenin/TCF4 target gene. In this study, we aimed to develop a novel targeted therapy to neutralize secreted progastrin to inhibit Wnt signaling, CSCs, and reduce relapses.

Experimental Design: Antibodies (monoclonal and humanized) directed against progastrin were produced and selected for target specificity and affinity. After validation of their effectiveness on survival of colorectal cancer cell lines harboring B-RAF or K-RAS mutations, their efficacy was assessed in vitro and in vivo, alone or concomitantly with chemotherapy, on CSC self-renewal capacity, tumor recurrence, and Wnt signaling.

Results: We show that anti-progastrin antibodies decrease self-renewal of CSCs both in vitro and in vivo, either alone or in combination with chemotherapy. Furthermore, migration and invasion of colorectal cancer cells are diminished; chemosensitivity is prolonged in SW620 and HT29 cells and posttreatment relapse is significantly delayed in T84 cells, xenografted nude mice. Finally, we show that the Wnt signaling activity in vitro is decreased, and, in transgenic mice developing Wnt-driven intestinal neoplasia, the tumor burden is alleviated, with an amplification of cell differentiation in the remaining tumors.

Conclusions: Altogether, these data show that humanized anti-progastrin antibodies might represent a potential new treatment for K-RAS–mutated colorectal patients, for which there is a crucial unmet medical need. Clin Cancer Res; 23(17); 5267–80. ©2017 AACR.



http://ift.tt/2vwzTtc

Expression and Therapeutic Potential of SOX9 in Chordoma

Purpose: Conventional chemotherapeutic agents are ineffective in the treatment of chordoma. We investigated the functional roles and therapeutic relevance of the sex-determining region Y (SRY)-box 9 (SOX9) in chordoma.

Experimental Design: SOX9 expression was examined by immunohistochemistry (IHC) using 50 chordoma tissue samples. SOX9 expression in chordoma cell lines was examined by Western blot and immunofluorescent assays. We used synthetic human SOX9 siRNA to inhibit the expression of SOX9. Cell proliferation ability and cytotoxicity of inhibiting SOX9 were assessed by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and clonogenic assays. The effect of SOX9 knockdown on chordoma cell motility was evaluated by a wound-healing assay and a Transwell invasion chamber assay. Knockdown of SOX9 induced apoptosis, cell-cycle arrest, as well as decreased expression of cancer stem cell markers were determined by Western blot and flow cytometric assays. The effect of the combination of SOX9 siRNA and the chemotherapeutic drug doxorubicin/cisplatin on chordoma cells was assessed by an MTT assay.

Results: Tissue microarray and IHC analysis showed that SOX9 is broadly expressed in chordomas and that higher expression levels of SOX9 correlated with a poor prognosis. RNA interference (RNAi)-mediated knockdown of SOX9 inhibited chordoma cell growth, decreased cell motility, and induced apoptosis as well as cell-cycle arrest. Moreover, the combination of SOX9 inhibition and chemotherapeutic drugs had an enhanced anti-cancer effect on chordoma cells.

Conclusions: Our results demonstrate that SOX9 plays a crucial role in chordoma. Targeting SOX9 provides a new rationale for treatment of chordoma. Clin Cancer Res; 23(17); 5176–86. ©2017 AACR.



http://ift.tt/2wrSzHR

Can Microsatellite Status of Colorectal Cancer Be Reliably Assessed after Neoadjuvant Therapy?

Purpose: Determination of microsatellite instability (MSI) by PCR is the gold standard; however, IHC of mismatch repair (MMR) proteins is frequently performed instead. The reliability of these methods on postneoadjuvant therapy specimens is unknown. We examined the effect of neoadjuvant therapy on MSI results by PCR and IHC.

Experimental design: A total of 239 colorectal cancers resected after neoadjuvant therapy were assessed for MSI with PCR and IHC. PCR and IHC results for matched paired pre- and posttreatment specimens were compared. In parallel, 2 isogenic cell lines conditioned for MMR functioning and 2 different patient-derived xenografts (PDXs) were exposed to chemotherapy, radiation, or both. We also examined whether establishment of PDXs induced MSI changes in 5 tumors. IHC and MSI were tested after treatment to assess for changes.

Results: We identified paired pre- and posttreatment specimens for 37 patients: 2 with PCR only, 34 with IHC only, and 1 with both. All 3 patients with PCR had microsatellite stable pre- and posttreatment specimens. Of the 35 patients with IHC, 30 had intact MMR proteins in pre- and posttreatment specimens, 1 had equivocal MLH1 staining in the pretreatment and loss in the posttreatment specimen, and 4 had intact pretreatment MSH6 but variable posttreatment staining. In the experimental setting, no changes in MSI status were detected after treatment or tumor implantation in animals.

Conclusions: Our findings show that the expression of MMR proteins, commonly MSH6, can change after neoadjuvant therapy and confirm PCR as the gold-standard test for MSI after neoadjuvant therapy. Clin Cancer Res; 23(17); 5246–54. ©2017 AACR.



http://ift.tt/2vwzAyy

Immune Correlates of GM-CSF and Melanoma Peptide Vaccination in a Randomized Trial for the Adjuvant Therapy of Resected High-Risk Melanoma (E4697)

Purpose: E4697 was a multicenter intergroup randomized placebo-controlled phase III trial of adjuvant GM-CSF and/or a multiepitope melanoma peptide vaccine for patients with completely resected, high-risk stage III/IV melanoma.

Experimental Design: A total of 815 patients were enrolled from December 1999 to October 2006 into this six-arm study. GM-CSF was chosen to promote the numbers and functions of dendritic cells (DC). The melanoma antigen peptide vaccine (Tyrosinase368-376 (370D), gp100209-217 (210M), MART-127-35) in montanide was designed to promote melanoma-specific CD8+ T-cell responses.

Results: Although the overall RFS and OS were not significantly improved with the vaccine or GM-CSF when compared with placebo, immunomodulatory effects were observed in peripheral blood and served as important correlates to this therapeutic study. Peripheral blood was examined to evaluate the impact of GM-CSF and/or the peptide vaccine on peripheral blood immunity and to investigate potential predictive or prognostic biomarkers. A total of 11.3% of unvaccinated patients and 27.1% of vaccinated patients developed peptide-specific CD8+ T-cell responses. HLA-A2+ patients who had any peptide-specific CD8+ T-cell response at day +43 tended to have poorer OS in univariate analysis. Patients receiving GM-CSF had significant reduction in percentages of circulating myeloid dendritic cells (mDC) and plasmacytoid DC (pDC) at day +43. In a subset of patients who received GM-CSF, circulating myeloid-derived suppressor cells (MDSC), and anti-GM-CSF–neutralizing antibodies (Nabs) were also modulated. The majority of patients developed anti-GM-CSF Nabs, which correlated with improved RFS and OS.

Conclusions: The assessment of cellular and humoral responses identified counterintuitive immune system changes correlating with clinical outcome. Clin Cancer Res; 23(17); 5034–43. ©2017 AACR.



http://ift.tt/2wrVNLl

MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer

Purpose: The phase II MONARCH 1 study was designed to evaluate the single-agent activity and adverse event (AE) profile of abemaciclib, a selective inhibitor of CDK4 and CDK6, in women with refractory hormone receptor–positive (HR+), HER2 metastatic breast cancer (MBC).

Experimental Design: MONARCH 1 was a phase II single-arm open-label study. Women with HR+/HER2 MBC who had progressed on or after prior endocrine therapy and had 1 or 2 chemotherapy regimens in the metastatic setting were eligible. Abemaciclib 200 mg was administered orally on a continuous schedule every 12 hours until disease progression or unacceptable toxicity. The primary objective of MONARCH 1 was investigator-assessed objective response rate (ORR). Other endpoints included clinical benefit rate, progression-free survival (PFS), and overall survival (OS).

Results: Patients (n = 132) had a median of 3 (range, 1–8) lines of prior systemic therapy in the metastatic setting, 90.2% had visceral disease, and 50.8% had ≥3 metastatic sites. At the 12-month final analysis, the primary objective of confirmed objective response rate was 19.7% (95% CI, 13.3–27.5; 15% not excluded); clinical benefit rate (CR+PR+SD≥6 months) was 42.4%, median progression-free survival was 6.0 months, and median overall survival was 17.7 months. The most common treatment-emergent AEs of any grade were diarrhea, fatigue, and nausea; discontinuations due to AEs were infrequent (7.6%).

Conclusions: In this poor-prognosis, heavily pretreated population with refractory HR+/HER2 metastatic breast cancer, continuous dosing of single-agent abemaciciclib was well tolerated and exhibited promising clinical activity. Clin Cancer Res; 23(17); 5218–24. ©2017 AACR.



http://ift.tt/2vwLhoN

Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with CUDC-907 Inhibits Thyroid Cancer Growth and Metastases

Purpose: There is currently no standard therapy for anaplastic thyroid cancer (ATC) and poorly differentiated thyroid cancer (PDTC), which account for two-thirds of thyroid cancer–related deaths. Driver mutations in the PI3K/AKT and RAF/RAS/MEK/ERK pathways are common in ATC and PDTC. Histone deacetylases (HDAC) regulate cancer initiation and progression. Our aim was to determine the therapeutic efficacy of simultaneously targeting these pathways in thyroid cancer with a single agent and to evaluate biomarkers of treatment response.

Experimental Design: CUDC-907 is a first-in-class compound, functioning as a dual inhibitor of HDACs and the PI3K/AKT pathway. We investigated its antiproliferative effect in vitro and in vivo.

Results: CUDC-907 significantly inhibited cellular proliferation in thyroid cancer cell lines, induced G2–M arrest with decreased levels of the checkpoint regulators cyclin B1, AURKA, AURKB, PLK1, and increased p21 and p27. Treatment induced apoptosis with increased caspase-3/7 activity and decreased survivin levels and decreased cellular migration and invasion. CUDC-907 treatment caused H3 hyperacetylation and decreased HDAC2 expression. HDAC2 was upregulated in ATC and other thyroid cancer histologic subtypes. CUDC-907 treatment reduced both p-AKT and p-ERK1/2 levels. Finally, CUDC-907 treatment, in a metastatic mouse model of thyroid cancer, showed significant inhibition of growth and metastases, and tumors from treated mice had decreased HDAC2 expression, suggesting that this may be a useful biomarker of response.

Conclusions: Dual inhibition of HDAC and the tyrosine kinase signaling pathways with CUDC-907 is a promising treatment strategy for advanced, metastatic thyroid cancer. Clin Cancer Res; 23(17); 5044–54. ©2017 AACR.



http://ift.tt/2wscYwu

Trabectedin Overrides Osteosarcoma Differentiative Block and Reprograms the Tumor Immune Environment Enabling Effective Combination with Immune Checkpoint Inhibitors

Purpose: Osteosarcoma, the most common primary bone tumor, is characterized by an aggressive behavior with high tendency to develop lung metastases as well as by multiple genetic aberrations that have hindered the development of targeted therapies. New therapeutic approaches are urgently needed; however, novel combinations with immunotherapies and checkpoint inhibitors require suitable preclinical models with intact immune systems to be properly tested.

Experimental Design: We have developed immunocompetent osteosarcoma models that grow orthotopically in the bone and spontaneously metastasize to the lungs, mimicking human osteosarcoma. These models have been used to test the efficacy of trabectedin, a chemotherapeutic drug utilized clinically for sarcomas and ovarian cancer.

Results: Trabectedin, as monotherapy, significantly inhibited osteosarcoma primary tumor growth and lung metastases by both targeting neoplastic cells and reprogramming the tumor immune microenvironment. Specifically, trabectedin induced a striking differentiation of tumor cells by favoring the recruitment of Runx2, the master genetic regulator of osteoblastogenesis, on the promoter of genes involved in the physiologic process of terminal osteoblast differentiation. Differentiated neoplastic cells, as expected, showed reduced proliferation rate. Concomitantly, trabectedin enhanced the number of tumor-infiltrating T lymphocytes, with local CD8 T cells, however, likely post-activated or exhausted, as suggested by their high expression of the inhibitory checkpoint molecule PD-1. Accordingly, the combination with a PD-1–blocking antibody significantly increased trabectedin efficacy in controlling osteosarcoma progression.

Conclusions: These results demonstrate the therapeutic efficacy of trabectedin in osteosarcoma treatment, unveiling its multiple activities and providing a solid rationale for its combination with immune checkpoint inhibitors. Clin Cancer Res; 23(17); 5149–61. ©2017 AACR.



http://ift.tt/2vwDwiD

A Pilot Study of Stereotactic Body Radiation Therapy Combined with Cytoreductive Nephrectomy for Metastatic Renal Cell Carcinoma

Purpose: While stereotactic body radiotherapy (SBRT) can reduce tumor volumes in patients with metastatic renal cell carcinoma (mRCC), little is known regarding the immunomodulatory effects of high-dose radiation in the tumor microenvironment. The main objectives of this pilot study were to assess the safety and feasibility of nephrectomy following SBRT treatment of patients with mRCC and analyze the immunological impact of high-dose radiation.

Experimental Design: Human RCC cell lines were irradiated and evaluated for immunomodulation. In a single-arm feasibility study, patients with mRCC were treated with 15 Gray SBRT at the primary lesion in a single fraction followed 4 weeks later by cytoreductive nephrectomy. RCC specimens were analyzed for tumor-associated antigen (TAA) expression and T-cell infiltration. The trial has reached accrual (ClinicalTrials.gov identifier: NCT01892930).

Results: RCC cells treated in vitro with radiation had increased TAA expression compared with untreated tumor cells. Fourteen patients received SBRT followed by surgery, and treatment was well-tolerated. SBRT-treated tumors had increased expression of the immunomodulatory molecule calreticulin and TAA (CA9, 5T4, NY-ESO-1, and MUC-1). Ki67+ -proliferating CD8+ T cells and FOXP3+ cells were increased in SBRT-treated patient specimens in tumors and at the tumor–stromal interface compared with archived patient specimens.

Conclusions: It is feasible to perform nephrectomy following SBRT with acceptable toxicity. Following SBRT, patient RCC tumors have increased expression of calreticulin, TAA, as well as a higher percentage of proliferating T cells compared with archived RCC tumors. Collectively, these studies provide evidence of immunomodulation following SBRT in mRCC. Clin Cancer Res; 23(17); 5055–65. ©2017 AACR.



http://ift.tt/2wrTND3

B7-H3 Expression in NSCLC and Its Association with B7-H4, PD-L1 and Tumor-Infiltrating Lymphocytes

Purpose: The immune checkpoint PD-1 and its receptor B7-H1 (PD-L1) are successful therapeutic targets in cancer but less is known about other B7 family members. Here, we determined the expression level of B7-H3 protein in non–small cell lung cancer (NSCLC) and evaluated its association with tumor-infiltrating lymphocytes (TIL), PD-L1, B7-H4, and major clinicopathologic characteristics is in 3 NSCLC cohorts.

Experimental design: We used multiplexed automated quantitative immunofluorescence (QIF) to assess the levels of B7-H3, PD-L1, B7-H4, and TILs in 634 NSCLC cases with validated antibodies. Associations between the marker levels, major clinicopathologic variables and survival were analyzed.

Results: Expression of B7-H3 protein was found in 80.4% (510/634) of the cases. High B7-H3 protein level (top 10 percentile) was associated with poor overall survival (P < 0.05). Elevated B7-H3 was consistently associated with smoking history across the 3 cohorts, but not with sex, age, clinical stage, and histology. Coexpression of B7-H3 and PD-L1 was found in 17.6% of the cases (112/634) and with B7-H4 in 10% (63/634). B7-H4 and PD-L1 were simultaneously detected only in 1.8% of NSCLCs (12/634). The expression of B7-H3 was not associated with the levels of CD3-, CD8-, and CD20-positive TILs.

Conclusions: B7-H3 protein is expressed in the majority of NSCLCs and is associated with smoking history. High levels of B7-H3 protein have a negative prognostic impact in lung carcinomas. Coexpression of B7-H3 with PD-L1 and B7-H4 is relatively low, suggesting a nonredundant biological role of these targets. Clin Cancer Res; 23(17); 5202–9. ©2017 AACR.



http://ift.tt/2vwDW8P

A Multikinase and DNA-PK Inhibitor Combination Immunomodulates Melanomas, Suppresses Tumor Progression, and Enhances Immunotherapies

Combination therapies have the potential to improve outcomes in melanoma patients but have not yet been clinically efficacious. Here, we used high-throughput flow cytometry-based screening to identify and characterize candidate therapies that might synergize with and augment T-cell immunotherapy efficacy. Two lead therapies, regorafenib (Reg) and NU7441, were selected based on their ability to alter a variety of immunomodulatory proteins, including CD55, CD73, CD155, programmed death-ligand 1 (PD-L1), nerve growth factor receptor (NGFR), and HLA class I in a heterogeneous panel of melanomas. The therapies also upregulated several melanoma antigens, inhibited proliferation, and perturbed activation of oncogenic signaling pathways in melanomas. T cells treated with the therapies proliferated normally and exhibited a favorably altered phenotype, including increased CD25, CD28, inducible T-cell costimulator (ICOS), and reduced expression of coinhibitory receptors. Cytokine production was also increased in treated T cells. When administered in mice, REg suppressed melanoma progression in a CD8+ T cell–dependent manner when used alone and with various immunotherapies. Additionally, Reg altered the number, phenotype, and function of various T-cell subsets in the tumor microenvironment. These studies reveal that Reg and NU7441 influence the immunobiology of both tumor cells and T cells and enhance the efficacy of various immunotherapies. Cancer Immunol Res; 5(9); 790–803. ©2017 AACR.



http://ift.tt/2wnChkY

Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy

Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1–specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730–43. ©2017 AACR.



http://ift.tt/2vOxTId

Development of Aggressive Pancreatic Ductal Adenocarcinomas Depends on Granulocyte Colony Stimulating Factor Secretion in Carcinoma Cells

The survival rate for pancreatic ductal adenocarcinoma (PDAC) remains low. More therapeutic options to treat this disease are needed, for the current standard of care is ineffective. Using an animal model of aggressive PDAC (Kras/p48TGFβRIIKO), we discovered an effect of TGFβ signaling in regulation of G-CSF secretion in pancreatic epithelium. Elevated concentrations of G-CSF in PDAC promoted differentiation of Ly6G+ cells from progenitors, stimulated IL10 secretion from myeloid cells, and decreased T-cell proliferation via upregulation of Arg, iNOS, VEGF, IL6, and IL1b from CD11b+ cells. Deletion of csf3 in PDAC cells or use of a G-CSF–blocking antibody decreased tumor growth. Anti–G-CSF treatment in combination with the DNA synthesis inhibitor gemcitabine reduced tumor size, increased the number of infiltrating T cells, and decreased the number of Ly6G+ cells more effectively than gemcitabine alone. Human analysis of human datasets from The Cancer Genome Atlas and tissue microarrays correlated with observations from our mouse model experiments, especially in patients with grade 1, stage II disease. We propose that in aggressive PDAC, elevated G-CSF contributes to tumor progression through promoting increases in infiltration of neutrophil-like cells with high immunosuppressive activity. Such a mechanism provides an avenue for a neoadjuvant therapeutic approach for this devastating disease. Cancer Immunol Res; 5(9); 718–29. ©2017 AACR.



http://ift.tt/2vOrJYu

What We're Reading: Article Recommendations from Our Deputy and Senior Editors



http://ift.tt/2wmZIuo

Primary Tumors Limit Metastasis Formation through Induction of IL15-Mediated Cross-Talk between Patrolling Monocytes and NK Cells

Metastases are responsible for the vast majority of cancer-related deaths. Although tumor cells can become invasive early during cancer progression, metastases formation typically occurs as a late event. How the immune response to primary tumors may dictate this outcome remains poorly understood, which hampers our capacity to manipulate it therapeutically. Here, we used a two-step experimental model, based on the highly aggressive B16F10 melanoma, that temporally segregates the establishment of primary tumors (subcutaneously) and the formation of lung metastases (from intravenous injection). This allowed us to identify a protective innate immune response induced by primary tumors that inhibits experimental metastasis. We found that in the presence of primary tumors, increased numbers of natural killer (NK) cells with enhanced IFN, granzyme B, and perforin production were recruited to the lung upon metastasis induction. These changes were mirrored by a local accumulation of patrolling monocytes and macrophages with high expression of MHC class II and NOS2. Critically, the protective effect on metastasis was lost upon patrolling monocyte or NK cell depletion, IL15 neutralization, or IFN ablation. The combined analysis of these approaches allowed us to establish a hierarchy in which patrolling monocytes, making IL15 in response to primary tumors, activate NK cells and IFN production that then inhibit lung metastasis formation. This work identifies an innate cell network and the molecular determinants responsible for "metastasis immunosurveillance," providing support for using the key molecular mediator, IL15, to improve immunotherapeutic outcomes. Cancer Immunol Res; 5(9); 812–20. ©2017 AACR.



http://ift.tt/2wmZJhW

Clonal Expansion and Interrelatedness of Distinct B-Lineage Compartments in Multiple Myeloma Bone Marrow

Multiple myeloma is characterized by the clonal expansion of malignant plasma cells in the bone marrow. But the phenotypic diversity and the contribution of less predominant B-lineage clones to the biology of this disease have been controversial. Here, we asked whether cells bearing the dominant multiple myeloma immunoglobulin rearrangement occupy phenotypic compartments other than that of plasma cells. To accomplish this, we combined 13-parameter FACS index sorting and t-Stochastic Neighbor Embedding (t-SNE) visualization with high-throughput single-cell immunoglobulin sequencing to track selected B-lineage clones across different stages of human B-cell development. As expected, the predominant clones preferentially mapped to aberrant plasma cell compartments, albeit phenotypically altered from wild type. Interestingly, up to 1.2% of cells of the predominant clones colocalized with B-lineage cells of a normal phenotype. In addition, minor clones with distinct immunoglobulin sequences were detected in up to 9% of sequenced cells, but only 2 out of 12 of these clones showed aberrant immune phenotypes. The majority of these minor clones showed intraclonal silent nucleotide differences within the CDR3s and varying frequencies of somatic mutations in the immunoglobulin genes. Therefore, the phenotypic range of multiple myeloma cells in the bone marrow is not confined to aberrant-phenotype plasma cells but extends to low frequencies of normal-phenotype B cells, in line with the recently reported success of B cell–targeting cellular therapies in some patients. The majority of minor clones result from parallel nonmalignant expansion. Cancer Immunol Res; 5(9); 744–54. ©2017 AACR.



http://ift.tt/2vOimYT

MICA-Expressing Monocytes Enhance Natural Killer Cell Fc Receptor-Mediated Antitumor Functions

Natural killer (NK) cells are large granular lymphocytes that promote the antitumor response via communication with other cell types in the tumor microenvironment. Previously, we have shown that NK cells secrete a profile of immune stimulatory factors (e.g., IFN, MIP-1α, and TNFα) in response to dual stimulation with the combination of antibody (Ab)-coated tumor cells and cytokines, such as IL12. We now demonstrate that this response is enhanced in the presence of autologous monocytes. Monocyte enhancement of NK cell activity was dependent on cell-to-cell contact as determined by a Transwell assay. It was hypothesized that NK cell effector functions against Ab-coated tumor cells were enhanced via binding of MICA on monocytes to NK cell NKG2D receptors. Strategies to block MICA–NKG2D interactions resulted in reductions in IFN production. Depletion of monocytes in vivo resulted in decreased IFN production by murine NK cells upon exposure to Ab-coated tumor cells. In mice receiving trastuzumab and IL12 therapy, monocyte depletion resulted in significantly greater tumor growth in comparison to mock-depleted controls (P < 0.05). These data suggest that NK cell–monocyte interactions enhance NK cell antitumor activity in the setting of monoclonal Ab therapy for cancer. Cancer Immunol Res; 5(9); 778–89. ©2017 AACR.



http://ift.tt/2wnnKWe

Concurrent PD-1 Blockade Negates the Effects of OX40 Agonist Antibody in Combination Immunotherapy through Inducing T-cell Apoptosis

Combination therapies that depend on checkpoint inhibitor antibodies (Abs) such as for PD-1 or its ligand (PD-L1) together with immune stimulatory agonist Abs like anti-OX40 are being tested in the clinic to achieve improved antitumor effects. Here, we studied the potential therapeutic and immune effects of one such combination: Ab to PD-1 with agonist Ab to OX40/vaccine. We tested the antitumor effects of different treatment sequencing of this combination. We report that simultaneous addition of anti–PD-1 to anti-OX40 negated the antitumor effects of OX40 Ab. Antigen-specific CD8+ T-cell infiltration into the tumor was diminished, the resultant antitumor response weakened, and survival reduced. Although we observed an increase in IFN-producing E7-specifc CD8+ T cells in the spleens of mice treated with the combination of PD-1 blockade with anti-OX40/vaccine, these cells underwent apoptosis both in the periphery and the tumor. These results indicate that anti–PD-1 added at the initiation of therapy exhibits a detrimental effect on the positive outcome of anti-OX40 agonist Ab. These findings have important implications on the design of combination immunotherapy for cancer, demonstrating the need to test treatment combination and sequencing before moving to the clinic. Cancer Immunol Res; 5(9); 755–66. ©2017 AACR.



http://ift.tt/2vOTNL3

Role of NOX2-Derived Reactive Oxygen Species in NK Cell-Mediated Control of Murine Melanoma Metastasis

The NADPH oxidase of myeloid cells, NOX2, generates reactive oxygen species (ROS) to eliminate pathogens and malignant cells. NOX2-derived ROS have also been proposed to dampen functions of natural killer (NK) cells and other antineoplastic lymphocytes in the microenvironment of established tumors. The mechanisms by which NOX2 and ROS influence the process of distant metastasis have only been partially explored. Here, we utilized genetically NOX2-deficient mice and pharmacologic inhibition of NOX2 to elucidate the role of NOX2 for the hematogenous metastasis of melanoma cells. After intravenous inoculation of B16F1 or B16F10 cells, lung metastasis formation was reduced in B6.129S6-Cybbtm1DinK (Nox2-KO) versus Nox2-sufficient wild-type (WT) mice. Systemic treatment with the NOX2-inhibitor histamine dihydrochloride (HDC) reduced melanoma metastasis and enhanced the infiltration of IFN-producing NK cells into lungs of WT but not of Nox2-KO mice. IFN-deficient B6.129S7-Ifngtm1Ts/J mice were prone to develop melanoma metastases and did not respond to in vivo treatment with HDC. We propose that NOX2-derived ROS facilitate metastasis of melanoma cells by downmodulating NK-cell function and that inhibition of NOX2 may restore IFN-dependent, NK cell–mediated clearance of melanoma cells. Cancer Immunol Res; 5(9); 804–11. ©2017 AACR.



http://ift.tt/2wo5k7T

Genome-Wide Testing of Exonic Variants and Breast Cancer Risk in the California Teachers Study

Background: Few studies have focused on the relationship of exonic variation with breast cancer and subtypes defined by tumor markers: estrogen receptor (ER), progesterone receptor (PR), and HER2.

Methods: We genotyped 1,764 breast cancer patients and 1,400 controls from the California Teachers Study cohort using the Infinium HumanExome Beadchip. Individual variant and gene-based analyses were conducted for overall breast cancer and by individual tumor marker subtype.

Results: No exonic variants or gene-based analyses were statistically significantly associated with breast cancer overall or by ER-, PR-, or HER2-defined subtype.

Conclusions: We did not detect any novel statistically significant exonic variants with overall breast cancer risk or by subtype.

Impact: Exonic variants in the exome chip may not be associated with overall breast cancer or subtype susceptibility. Cancer Epidemiol Biomarkers Prev; 26(9); 1462–5. ©2017 AACR.



http://ift.tt/2gno4uY

The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade

Immune checkpoint inhibitors targeting the interaction between programmed cell death-1 (PD-1) and its ligand PD-L1 induce tumor regression in a subset of non–small cell lung cancer patients. However, clinical response rates are less than 25%. Evaluation of combinations of immunotherapy with existing therapies requires appropriate preclinical animal models. In this study, murine lung cancer cells (CMT167 and LLC) were implanted either orthotopically in the lung or subcutaneously in syngeneic mice, and response to anti–PD-1/PD-L1 therapy was determined. Anti–PD-1/PD-L1 therapy inhibited CMT167 orthotopic lung tumors by 95%. The same treatments inhibited CMT167 subcutaneous tumors by only 30% and LLC orthotopic lung tumors by 35%. CMT167 subcutaneous tumors had more Foxp3+ CD4+ T cells and fewer PD-1+ CD4+ T cells compared with CMT167 orthotopic tumors. Flow cytometric analysis also demonstrated increased abundance of PD-L1high cells in the tumor microenvironment in CMT167 tumor–bearing lungs compared with CMT167 subcutaneous tumors or LLC tumor–bearing lungs. Silencing PD-L1 expression in CMT167 cells resulted in smaller orthotopic tumors that remained sensitive to anti–PD-L1 therapy, whereas implantation of CMT167 cells into PD-L1 mice blocked orthotopic tumor growth, indicating a role for PD-L1 in both the cancer cell and the microenvironment. These findings indicate that the response of cancer cells to immunotherapy will be determined by both intrinsic properties of the cancer cells and specific interactions with the microenvironment. Experimental models that accurately recapitulate the lung tumor microenvironment are useful for evaluation of immunotherapeutic agents. Cancer Immunol Res; 5(9); 767–77. ©2017 AACR.



http://ift.tt/2vOvpJA

Role for High-Affinity IgE Receptor in Prognosis of Lung Adenocarcinoma Patients

Cancer development and biology is influenced by the host immune system. Emerging data indicate that the context of immune cell infiltrates may contribute to cancer prognosis. However, the types of infiltrating immune cells that are critical for cancer development remain controversial. In attempts to gain insights into the immune networks that regulate and/or predict tumor progression, gene expression analysis was conducted on microarray datasets of resected tumor samples from 128 early-stage non–small cell lung cancer (NSCLC) adenocarcinoma patients. By limiting analysis to immune-related genes, we identified a 9-gene signature using MAximizing R Square Algorithm that selected for the greatest separation between favorable and adverse prognostic patient subgroups. The prognostic value of this 9-gene signature was validated in 10 additional independently published microarray datasets of lung adenocarcinoma [n = 1,097; overall survival hazard ratio (HR), 2.05; 95% confidence interval, 1.64–2.56; P < 0.0001] and was found to be an independent prognostic indicator relative to tumor stage (overall survival HR, 2.09, 95% confidence interval, 1.65–2.66; P < 0.0001). Network analysis revealed that genes associated with Fc complex (FCER1, MS4A2) formed the largest and most significant pathway of the signature. Using immunohistochemistry, we validated that MS4A2, the β subunit of the IgE receptor expressed on mast cells, is a favorable prognostic indicator and show that MS4A2 gene expression is an independent prognostic marker for early-stage lung cancer patient survival. Cancer Immunol Res; 5(9); 821–9. ©2017 AACR.



http://ift.tt/2wmZHGQ

Monthly News Roundup - August 2017

Kymriah from Novartis Approved as First U.S. CAR-T Cell Therapy History was made this month as the U.S. Food and Drug Administration (FDA) approved the first U.S. cell-based gene therapy known collectively as chimeric antigen receptor (CAR)...

http://ift.tt/2vODMow

Potential Susceptibility Loci Identified for Renal Cell Carcinoma by Targeting Obesity-Related Genes

Background: Obesity is an established risk factor for renal cell carcinoma (RCC). Although genome-wide association studies (GWAS) of RCC have identified several susceptibility loci, additional variants might be missed due to the highly conservative selection.

Methods: We conducted a multiphase study utilizing three independent genome-wide scans at MD Anderson Cancer Center (MDA RCC GWAS and MDA RCC OncoArray) and National Cancer Institute (NCI RCC GWAS), which consisted of a total of 3,530 cases and 5,714 controls, to investigate genetic variations in obesity-related genes and RCC risk.

Results: In the discovery phase, 32,946 SNPs located at ±10 kb of 2,001 obesity-related genes were extracted from MDA RCC GWAS and analyzed using multivariable logistic regression. Proxies (R2 > 0.8) were searched or imputation was performed if SNPs were not directly genotyped in the validation sets. Twenty-one SNPs with P < 0.05 in both MDA RCC GWAS and NCI RCC GWAS were subsequently evaluated in MDA RCC OncoArray. In the overall meta-analysis, significant (P < 0.05) associations with RCC risk were observed for SNP mapping to IL1RAPL2 [rs10521506-G: ORmeta = 0.87 (0.81–0.93), Pmeta = 2.33 x 10–5], PLIN2 [rs2229536-A: ORmeta = 0.87 (0.81–0.93), Pmeta = 2.33 x 10–5], SMAD3 [rs4601989-A: ORmeta = 0.86 (0.80–0.93), Pmeta = 2.71 x 10–4], MED13L [rs10850596-A: ORmeta = 1.14 (1.07–1.23), Pmeta = 1.50 x 10–4], and TSC1 [rs3761840-G: ORmeta = 0.90 (0.85–0.97), Pmeta = 2.47 x 10–3]. We did not observe any significant cis-expression quantitative trait loci effect for these SNPs in the TCGA KIRC data.

Conclusions: Taken together, we found that genetic variation of obesity-related genes could influence RCC susceptibility.

Impact: The five identified loci may provide new insights into disease etiology that reveal importance of obesity-related genes in RCC development. Cancer Epidemiol Biomarkers Prev; 26(9); 1436–42. ©2017 AACR.



http://ift.tt/2gnocKY

Addressing Disparities: The 10th Anniversary of the AACR Cancer Health Disparities Conference



http://ift.tt/2vwI7RX

Highlights of This Issue



http://ift.tt/2gnoAZW

The Premenopausal Breast Cancer Collaboration: A Pooling Project of Studies Participating in the National Cancer Institute Cohort Consortium

Breast cancer is a leading cancer diagnosis among premenopausal women around the world. Unlike rates in postmenopausal women, incidence rates of advanced breast cancer have increased in recent decades for premenopausal women. Progress in identifying contributors to breast cancer risk among premenopausal women has been constrained by the limited numbers of premenopausal breast cancer cases in individual studies and resulting low statistical power to subcategorize exposures or to study specific subtypes. The Premenopausal Breast Cancer Collaborative Group was established to facilitate cohort-based analyses of risk factors for premenopausal breast cancer by pooling individual-level data from studies participating in the United States National Cancer Institute Cohort Consortium. This article describes the Group, including the rationale for its initial aims related to pregnancy, obesity, and physical activity. We also describe the 20 cohort studies with data submitted to the Group by June 2016. The infrastructure developed for this work can be leveraged to support additional investigations. Cancer Epidemiol Biomarkers Prev; 26(9); 1360–9. ©2017 AACR.



http://ift.tt/2gnudau

Age at Menarche and Late Adolescent Adiposity Associated with Mammographic Density on Processed Digital Mammograms in 24,840 Women

Background: High mammographic density is strongly associated with increased breast cancer risk. Some, but not all, risk factors for breast cancer are also associated with higher mammographic density.

Methods: The study cohort (N = 24,840) was drawn from the Research Program in Genes, Environment and Health of Kaiser Permanente Northern California and included non-Hispanic white females ages 40 to 74 years with a full-field digital mammogram (FFDM). Percent density (PD) and dense area (DA) were measured by a radiological technologist using Cumulus. The association of age at menarche and late adolescent body mass index (BMI) with PD and DA were modeled using linear regression adjusted for confounders.

Results: Age at menarche and late adolescent BMI were negatively correlated. Age at menarche was positively associated with PD (P value for trend <0.0001) and DA (P value for trend <0.0001) in fully adjusted models. Compared with the reference category of ages 12 to 13 years at menarche, menarche at age >16 years was associated with an increase in PD of 1.47% (95% CI, 0.69–2.25) and an increase in DA of 1.59 cm2 (95% CI, 0.48–2.70). Late adolescent BMI was inversely associated with PD (P < 0.0001) and DA (P < 0.0001) in fully adjusted models.

Conclusions: Age at menarche and late adolescent BMI are both associated with Cumulus measures of mammographic density on processed FFDM images.

Impact: Age at menarche and late adolescent BMI may act through different pathways. The long-term effects of age at menarche on cancer risk may be mediated through factors besides mammographic density. Cancer Epidemiol Biomarkers Prev; 26(9); 1450–8. ©2017 AACR.



http://ift.tt/2gntXbx

Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies

A growing number and increasing diversity of factors are available for epidemiological studies. These measures provide new avenues for discovery and prevention, yet they also raise many challenges for adoption in epidemiological investigations. Here, we evaluate 1) designs to investigate diseases that consider heterogeneous and multidimensional indicators of exposure and behavior, 2) the implementation of numerous methods to capture indicators of exposure, and 3) the analytical methods required for discovery and validation. We find that case-control studies have provided insights into genetic susceptibility but are insufficient for characterizing complex effects of environmental factors on disease development. Prospective and two-phase designs are required but must balance extended data collection with follow-up of study participants. We discuss innovations in assessments including the microbiome; mass spectrometry and metabolomics; behavioral assessment; dietary, physical activity, and occupational exposure assessment; air pollution monitoring; and global positioning and individual sensors. We claim the the availability of extensive correlated data raises new challenges in disentangling specific exposures that influence cancer risk from among extensive and often correlated exposures. In conclusion, new high-dimensional exposure assessments offer many new opportunities for environmental assessment in cancer development. Cancer Epidemiol Biomarkers Prev; 26(9); 1370–80. ©2017 AACR.



http://ift.tt/2vwHzLT

History of Comorbidities and Survival of Ovarian Cancer Patients, Results from the Ovarian Cancer Association Consortium

Background: Comorbidities can affect survival of ovarian cancer patients by influencing treatment efficacy. However, little evidence exists on the association between individual concurrent comorbidities and prognosis in ovarian cancer patients.

Methods: Among patients diagnosed with invasive ovarian carcinoma who participated in 23 studies included in the Ovarian Cancer Association Consortium, we explored associations between histories of endometriosis; asthma; depression; osteoporosis; and autoimmune, gallbladder, kidney, liver, and neurological diseases and overall and progression-free survival. Using Cox proportional hazards regression models adjusted for age at diagnosis, stage of disease, histology, and study site, we estimated pooled HRs and 95% confidence intervals to assess associations between each comorbidity and ovarian cancer outcomes.

Results: None of the comorbidities were associated with ovarian cancer outcome in the overall sample nor in strata defined by histologic subtype, weight status, age at diagnosis, or stage of disease (local/regional vs. advanced).

Conclusions: Histories of endometriosis; asthma; depression; osteoporosis; and autoimmune, gallbladder, kidney, liver, or neurologic diseases were not associated with ovarian cancer overall or progression-free survival.

Impact: These previously diagnosed chronic diseases do not appear to affect ovarian cancer prognosis. Cancer Epidemiol Biomarkers Prev; 26(9); 1470–3. ©2017 AACR.



http://ift.tt/2gnx03F

Glycerol-3-phosphate Acyltransferase 1 Promotes Tumor Cell Migration and Poor Survival in Ovarian Carcinoma

Glycerophosphodiesterase EDI3 (GPCPD1; GDE5; GDPD6) has been suggested to promote cell migration, adhesion, and spreading, but its mechanisms of action remain uncertain. In this study, we targeted the glycerol-3-phosphate acyltransferase GPAM along with choline kinase-α (CHKA), the enzymes that catabolize the products of EDI3 to determine which downstream pathway is relevant for migration. Our results clearly showed that GPAM influenced cell migration via the signaling lipid lysophosphatidic acid (LPA), linking it with GPAM to cell migration. Analysis of GPAM expression in different cancer types revealed a significant association between high GPAM expression and reduced overall survival in ovarian cancer. Silencing GPAM in ovarian cancer cells decreased cell migration and reduced the growth of tumor xenografts. In contrast to these observations, manipulating CHKA did not influence cell migration in the same set of cell lines. Overall, our findings show how GPAM influences intracellular LPA levels to promote cell migration and tumor growth. Cancer Res; 77(17); 4589–601. ©2017 AACR.

http://ift.tt/2vwtHS8

Retraction: Abstract 408: ACP-196, An Orally Bioavailable Covalent Selective Inhibitor of Btk, Modulates the Innate Tumor Microenvironment, Exhibits Antitumor Efficacy and Enhances Gemcitabine Activity in Pancreatic Cancer



http://ift.tt/2vvBsYi

WEE1 Kinase Inhibitor AZD1775 Has Preclinical Efficacy in LKB1-Deficient Non-Small Cell Lung Cancer

G1–S checkpoint loss contributes to carcinogenesis and increases reliance upon the G2–M checkpoint for adaptation to stress and DNA repair, making G2–M checkpoint inhibition a target for novel therapeutic development. AZD1775, an inhibitor against the critical G2–M checkpoint protein WEE1, is currently in clinical trials across a number of tumor types. AZD1775 and DNA-damaging agents have displayed favorable activity in several preclinical tumor models, often in the molecular context of TP53 loss. Whether AZD1775 efficacy is modulated by other molecular contexts remains poorly understood. The tumor suppressor serine/threonine kinase 11 (LKB1/STK11) is one of the most frequently mutated genes in non–small cell lung cancer (NSCLC) and is commonly comutated with oncogenic KRAS mutations. We investigated the preclinical effects of AZD1775 in the context of KRAS/LKB1 in NSCLC. Using NSCLC cell lines, we found that AZD1775 alone and in combination with DNA-damaging agents (e.g., cisplatin and radiation) decreased tumor cell viability in LKB1-deficient NSCLC cells. In vitro, LKB1 deficiency enhanced DNA damage and apoptosis in response to AZD1775 exposure compared with wild-type LKB1 cells. In a genetically engineered mouse model of mutant Kras with concomitant loss of Lkb1, combined AZD1775 and cisplatin extended overall survival compared with cisplatin alone. Our data suggest that lack of phosphorylation of LKB1 by ATM was involved in AZD1775-mediated cytotoxicity. Collectively, these findings provide a clinical application for AZD1775 with DNA-damaging agents in KRAS/LKB1 NSCLC. Cancer Res; 77(17); 4663–72. ©2017 AACR.

http://ift.tt/2vwpY6U

Angela M.H. Brodie, PhD, FAACR: In Memoriam (1934-2017)



http://ift.tt/2vvBFL4

SPIN90 Depletion and Microtubule Acetylation Mediate Stromal Fibroblast Activation in Breast Cancer Progression

Biomechanical remodeling of stroma by cancer-associated fibroblasts (CAF) in early stages of cancer is critical for cancer progression, and mechanical cues such as extracellular matrix stiffness control cell differentiation and malignant progression. However, the mechanism by which CAF activation occurs in low stiffness stroma in early stages of cancer is unclear. Here, we investigated the molecular mechanism underlying CAF regulation by SPIN90 and microtubule acetylation under conditions of mechanically soft matrices corresponding to normal stromal rigidity. SPIN90 was downregulated in breast cancer stroma but not tumor, and this low stromal expression correlated with decreased survival in breast cancer patients. Spin90 deficiency facilitated recruitment of mDia2 and APC complex to microtubules, resulting in increased microtubule acetylation. This increased acetylation promoted nuclear localization of YAP, which upregulated expression of myofibroblast marker genes on soft matrices. Spin90 depletion enhanced tumor progression, and blockade of microtubule acetylation in CAF significantly inhibited tumor growth in mice. Together, our data demonstrate that loss of SPIN90-mediated microtubule acetylation is a key step in CAF activation in low stiffness stroma. Moreover, correlation among these factors in human breast cancer tissue supports the clinical relevance of SPIN90 and microtubule acetylation in tumor development. Cancer Res; 77(17); 4710–22. ©2017 AACR.

http://ift.tt/2vwTg5v

Charting the Future of Cancer Health Disparities Research: A Position Statement from the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute



http://ift.tt/2wre5wh

Resistance to the Antibody-Drug Conȷugate T-DM1 Is Based in a Reduction in Lysosomal Proteolytic Activity

Trastuzumab-emtansine (T-DM1) is an antibody–drug conjugate (ADC) that was approved recently to treat HER2+ breast cancers. Despite its impressive clinical efficacy in many patients, intrinsic and acquired resistance to T-DM1 has emerged as a challenge. To identify mechanisms of T-DM1 resistance, we isolated several resistant HER2+ clones exhibiting stable drug refractoriness in vitro and in vivo. Genomic comparisons showed substantial differences among three of the isolated clones, indicating several potential mechanisms of resistance to T-DM1. However, we observed no differences in HER2 levels and signaling among the resistant models and parental HER2+ cells. Bioinformatics studies suggested that intracellular trafficking of T-DM1 could underlie resistance to T-DM1, and systematic analysis of the path followed by T-DM1 showed that the early steps in the internalization of the drug were unaltered. However, in some of the resistant clones, T-DM1 accumulated in lysosomes. In these clones, lysosomal pH was increased and the proteolytic activity of these organelles was deranged. These results were confirmed in T-DM1–resistant cells from patient-derived HER2+ samples. We postulate that resistance to T-DM1 occurs through multiple mechanisms, one of which is impaired lysosomal proteolytic activity. Because other ADC may use the same internalization-degradation pathway to deliver active payloads, strategies aimed at restoring lysosomal functionality might overcome resistance to ADC-based therapies and improve their effectiveness. Cancer Res; 77(17); 4639–51. ©2017 AACR.

http://ift.tt/2vwPadx

Epithelial-to-Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal Tumors: A Paradox in Sarcomas?

The epithelial-to-mesenchymal transition (EMT) is a reversible process comprised of various subprograms via which epithelial cells reduce their intercellular adhesions and proliferative capacity while gaining a mesenchymal phenotype with increased migratory and invasive properties. This process has been well described in several carcinomas, which are cancers of epithelial origin, and is crucial to metastatic tumor cell dissemination and drug resistance. In contrast, the precise role of EMT-related processes in tumors originating from mesenchymal tissues, such as bone and soft-tissues sarcomas, is still largely unclear. In fact, although the existence of the EMT in sarcomas appears paradoxical because these cancers are, by definition, mesenchymal ab initio, accumulating evidence suggests that many sarcomas can undergo EMT-related processes, which may be associated with aggressive clinical behavior. These processes may be especially operative in certain sarcoma subtypes, such as carcinosarcomas displaying a biphenotypic morphology with characteristics of both mesenchymal and epithelial tumors. In this review, we discuss findings regarding the potential existence of EMT-related processes in sarcomas and propose that sarcomas can reside in a metastable state, enabling them to become either more mesenchymal or epithelial under specific conditions, which likely has important clinical implications. Cancer Res; 77(17); 4556–61. ©2017 AACR.

http://ift.tt/2vvXpGS

Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis

Increasing evidence exists for the role of immunosuppressive adenosine in promoting tumor growth and spread in a number of cancer types, resulting in poor clinical outcomes. In this study, we assessed whether the CD73-adenosinergic pathway is active in melanoma patients and whether adenosine restricts the efficacy of clinically approved targeted therapies for commonly mutated BRAFV600E melanoma. In AJCC stage III melanoma patients, CD73 expression (the enzyme that generates adenosine) correlated significantly with patients presenting nodal metastatic melanoma, suggesting that targeting this pathway may be effective in advanced stage disease. In addition, dabrafenib and trametinib treatment of CD73+ BRAFV600E-mutant melanomas caused profound CD73 downregulation in tumor cells. Inhibition of BRAF and MEK in combination with the A2A adenosine receptor provided significant protection against tumor initiation and metastasis formation in mice. Our results suggest that targeting adenosine may enhance therapeutic responses for melanoma patients receiving targeted or immune-based therapies. Cancer Res; 77(17); 4684–96. ©2017 AACR.

http://ift.tt/2vwiX60

Acquired Immune Resistance Follows Complete Tumor Regression without Loss of Target Antigens or IFN{gamma} Signaling

Cancer immunotherapy can result in durable tumor regressions in some patients. However, patients who initially respond often experience tumor progression. Here, we report mechanistic evidence of tumoral immune escape in an exemplary clinical case: a patient with metastatic melanoma who developed disease recurrence following an initial, unequivocal radiologic complete regression after T-cell–based immunotherapy. Functional cytotoxic T-cell responses, including responses to one mutant neoantigen, were amplified effectively with therapy and generated durable immunologic memory. However, these immune responses, including apparently effective surveillance of the tumor mutanome, did not prevent recurrence. Alterations of the MHC class I antigen-processing and presentation machinery (APM) in resistant cancer cells, but not antigen loss or impaired IFNγ signaling, led to impaired recognition by tumor-specific CD8+ T cells. Our results suggest that future immunotherapy combinations should take into account targeting cancer cells with intact and impaired MHC class I–related APM. Loss of target antigens or impaired IFNγ signaling does not appear to be mandatory for tumor relapse after a complete radiologic regression. Personalized studies to uncover mechanisms leading to disease recurrence within each individual patient are warranted. Cancer Res; 77(17); 4562–6. ©2017 AACR.

http://ift.tt/2wru1yr

Transglutaminase 2 Is a Direct Target Gene of YAP/TAZ—Letter



http://ift.tt/2vwtHBC

APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition

The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like APOBEC3A and APOBEC3B have emerged as key mutation drivers in cancer. Here, we show that APOBEC3A and APOBEC3B activities impose a unique type of replication stress by inducing abasic sites at replication forks. In contrast to cells under other types of replication stress, APOBEC3A-expressing cells were selectively sensitive to ATR inhibitors (ATRi), but not to a variety of DNA replication inhibitors and DNA-damaging drugs. In proliferating cells, APOBEC3A modestly elicited ATR but not ATM. ATR inhibition in APOBEC3A-expressing cells resulted in a surge of abasic sites at replication forks, revealing an ATR-mediated negative feedback loop during replication. The surge of abasic sites upon ATR inhibition associated with increased accumulation of single-stranded DNA, a substrate of APOBEC3A, triggering an APOBEC3A-driven feed-forward loop that ultimately drove cells into replication catastrophe. In a panel of cancer cell lines, ATRi selectively induced replication catastrophe in those harboring high APOBEC3A and/or APOBEC3B activities, showing that APOBEC3A and APOBEC3B activities conferred susceptibility to ATRi. Our results define an APOBEC-driven replication stress in cancer cells that may offer an opportunity for ATR-targeted therapy. Cancer Res; 77(17); 4567–78. ©2017 AACR.

http://ift.tt/2vw79AJ

Cytosine Deaminase APOBEC3A Sensitizes Leukemia Cells to Inhibition of the DNA Replication Checkpoint

Mutational signatures in cancer genomes have implicated the APOBEC3 cytosine deaminases in oncogenesis, possibly offering a therapeutic vulnerability. Elevated APOBEC3B expression has been detected in solid tumors, but expression of APOBEC3A (A3A) in cancer has not been described to date. Here, we report that A3A is highly expressed in subsets of pediatric and adult acute myelogenous leukemia (AML). We modeled A3A expression in the THP1 AML cell line by introducing an inducible A3A gene. A3A expression caused ATR-dependent phosphorylation of Chk1 and cell-cycle arrest, consistent with replication checkpoint activation. Further, replication checkpoint blockade via small-molecule inhibition of ATR kinase in cells expressing A3A led to apoptosis and cell death. Although DNA damage checkpoints are broadly activated in response to A3A activity, synthetic lethality was specific to ATR signaling via Chk1 and did not occur with ATM inhibition. Our findings identify elevation of A3A expression in AML cells, enabling apoptotic sensitivity to inhibitors of the DNA replication checkpoint and suggesting it as a candidate biomarker for ATR inhibitor therapy. Cancer Res; 77(17); 4579–88. ©2017 AACR.

http://ift.tt/2wre7Ep

LSD1 Inhibitor T-3775440 Inhibits SCLC Cell Proliferation by Disrupting LSD1 Interactions with SNAG Domain Proteins INSM1 and GFI1B

T-3775440 is an irreversible inhibitor of the chromatin demethylase LSD1, which exerts antiproliferative effects by disrupting the interaction between LSD1 and GFI1B, a SNAG domain transcription factor, inducing leukemia cell transdifferentiation. Here, we describe the anticancer effects and mechanism of action of T-3775440 in small-cell lung cancer (SCLC). T-3775440 inhibited proliferation of SCLC cells in vitro and retarded SCLC tumor growth in vivo. T-3775440 disrupted the interaction between LSD1 and the transcriptional repressor INSM1, thereby inhibiting expression of neuroendocrine-associated genes, such as ASCL1. INSM1 silencing phenocopied the effects of T-3775440 on gene expression and cell proliferation, consistent with the likelihood T-3775440 mediated its effects in SCLC by inhibiting INSM1. T-3775440 also inhibited proliferation of an SCLC cell line that overexpressed GFI1B, rather than INSM1, by disrupting the interaction between LSD1 and GFI1B. Taken together, our results argue that LSD1 plays an important role in neuroendocrine-associated transcription and cell proliferation of SCLC via interactions with the SNAG domain proteins INSM1 and GFI1B. Targeting these critical interactions with LSD1 inhibitors offers a novel rational strategy to therapeutically manage SCLC. Cancer Res; 77(17); 4652–62. ©2017 AACR.

http://ift.tt/2wrSXpC

MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy

Evolution of tumor cell phenotypes promotes heterogeneity and therapy resistance. Here we found that induction of CD73, the enzyme that generates immunosuppressive adenosine, is linked to melanoma phenotype switching. Activating MAPK mutations and growth factors drove CD73 expression, which marked both nascent and full activation of a mesenchymal-like melanoma cell state program. Proinflammatory cytokines like TNFα cooperated with MAPK signaling through the c-Jun/AP-1 transcription factor complex to activate CD73 transcription by binding to an intronic enhancer. In a mouse model of T-cell immunotherapy, CD73 was induced in relapse melanomas, which acquired a mesenchymal-like phenotype. We also detected CD73 upregulation in melanoma patients progressing under adoptive T-cell transfer or immune checkpoint blockade, arguing for an adaptive resistance mechanism. Our work substantiates CD73 as a target to combine with current immunotherapies, but its dynamic regulation suggests limited value of CD73 pretreatment expression as a biomarker to stratify melanoma patients. Cancer Res; 77(17); 4697–709. ©2017 AACR.

http://ift.tt/2wsf5QO

Identification of Interacting Stromal Axes in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is a molecularly heterogeneous cancer that is difficult to treat. Despite the role it may play in tumor progression and response to therapy, microenvironmental (stromal) heterogeneity in TNBC has not been well characterized. To address this challenge, we investigated the transcriptome of tumor-associated stroma isolated from TNBC (n = 57). We identified four stromal axes enriched for T cells (T), B cells (B), epithelial markers (E), or desmoplasia (D). Our analysis method (STROMA4) assigns a score along each stromal axis for each patient and then combined the axis scores to subtype patients. Analysis of these subtypes revealed that prognostic capacity of the B, T, and E scores was governed by the D score. When compared with a previously published TNBC subtyping scheme, the STROMA4 method better captured tumor heterogeneity and predicted patient benefit from therapy with increased sensitivity. This approach produces a simple ontology that captures TNBC heterogeneity and informs how tumor-associated properties interact to affect prognosis. Cancer Res; 77(17); 4673–83. ©2017 AACR.

http://ift.tt/2wrw066

TP53INP1 Downregulation Activates a p73-Dependent DUSP10/ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma

Identifying critical factors involved in the metastatic progression of hepatocellular carcinoma (HCC) may offer important therapeutic opportunities. Here, we report that the proapoptotic stress response factor TP53INP1 is often selectively downregulated in advanced stage IV and metastatic human HCC tumors. Mechanistic investigations revealed that TP53INP1 downregulation in early-stage HCC cells promoted metastasis via DUSP10 phosphatase-mediated activation of the ERK pathway. The DUSP10 promoter included putative binding sites for p73 directly implicated in modulation by TP53INP1. Overall, our findings show how TP53INP1 plays a critical role in limiting the progression of early-stage HCC, with implications for developing new therapeutic strategies to attack metastatic HCC. Cancer Res; 77(17); 4602–12. ©2017 AACR.

http://ift.tt/2wrZIba

PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer

Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo. Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613–25. ©2017 AACR.

http://ift.tt/2vwALxR