Abstract
The α-synuclein protein, encoded by
SNCA, has a key role in the pathogenesis of Parkinson's disease and other synucleinopathies. Although usually sporadic, Parkinson's disease can result from inherited copy number variants in
SNCA and other genes. We have hypothesized a role of somatic
SNCA mutations, leading to mosaicism, in sporadic synucleinopathies. The evidence for mosaicism in healthy and diseased brain is increasing rapidly, with somatic copy number gains of
APP reported in Alzheimer's brain. Here we demonstrate somatic
SNCA copy number gains in synucleinopathies (Parkinson's disease and multiple system atrophy), focusing on substantia nigra. We selected sporadic cases with relatively young onset or short disease duration, and first excluded high level copy number variant mosaicism by DNA analysis using digital PCR for
SNCA, and/or customized array comparative genomic hybridization. To detect low level
SNCA copy number variant mosaicism, we used fluorescent
in situ hybridization with oligonucleotide custom-designed probes for
SNCA, validated on brain and fibroblasts with known copy number variants. We determined
SNCA copy number in nigral dopaminergic neurons and other cells in frozen nigra sections from 40 cases with Parkinson's disease and five with multiple system atrophy, and 25 controls, in a blinded fashion. Parkinson's disease cases were significantly more likely than controls to have any
SNCA gains in dopaminergic neurons (
P = 0.0036), and overall (
P = 0.0052). The average proportion of dopaminergic neurons with gains in each nigra was significantly higher in Parkinson's disease than controls (0.78% versus 0.45%;
P = 0.017). There was a negative correlation between the proportion of dopaminergic neurons with gains and onset age in Parkinson's disease (
P = 0.013), but not with disease duration, or age of death in cases or controls. Cases with tremor at onset were less likely to have gains (
P = 0.035). All multiple system atrophy cases had gains, and the highest levels in dopaminergic neurons were in two of these cases (2.76%, 2.48%). We performed selective validation with different probes after dye swapping. All three control probes used showed minimal or no gains (≤0.1% in dopaminergic neurons). We also found occasional
SNCA gains in frontal neurons of cases with Parkinson's disease, and the putamen of one multiple system atrophy case. We present evidence of somatic
SNCA gains in brain, more commonly in nigral dopaminergic neurons of Parkinson's disease than controls, negatively correlated with onset age, and possibly commonest in some multiple system atrophy cases. Somatic
SNCA gains may be a risk factor for sporadic synucleinopathies, or a result of the disease process.
https://ift.tt/2yqDXwM