Am J Cancer Res. 2022 Feb 15;12(2):585-600. eCollection 2022.
ABSTRACT
Pre-B-cell leukaemia (PBX) is a transcription factor family (PBX1, PBX2, PBX3 and PBX4) that regulates important cellular functions and has been identified to be involved in human cancers. This study aimed to explore the expression of PBX genes and their clinical significance in colorectal cancer (CRC). We analysed the differential expression of PBX genes in CRC vs. normal tissue, using the Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and ONCOMINE platform (https://www.oncomine.org/). The UALCAN (http://ualcan.path.uab.edu/) interactive OMICS web-server was used to evaluate the epigenetic regulation of PBX genes via their promoter methylation status. We found that only PBX4 was upregulated whereas PBX1 and PBX3 were downregulated (644 tumour vs. 51 normal samples) (P<0.001). The methylation st atus of PBX4 promoter appeared to be decreased (P=1.4e-07) whereas the methylation status of PBX1 and PBX3 promoters was increased (P=3.8e-04 and P=3.2e-07, respectively) in cancer vs. normal samples. To determine the prognostic value of PBXs, we conducted a Kaplan-Meier survival analysis and multivariable COX regression. We observed that high PBX4 expression was associated with increased risk for a worse overall survival (OS) in the TCGA CRC patient cohort (n=639), (HR 1.46, 95% CI 1.14-1.88, P=0.003) adjusted for age, gender, tumour location and metastases. We conducted in vitro gene expression modulation experiments to investigate the impact of PBX4 overexpression in CRC cell (HCT116) growth. Additionally, we evaluated the RNA expression of epithelial-mesenchymal transition (EMT) and angiogenesis markers. In vitro studies showed that PBX4 overexpression increased CRC cell proliferation (P<0.001) and upregulated the expres sion of EMT markers VIM, CDH1, CDH2, ZEB1, SNAI1 (P<0.05) and angiomarker VEGFA (P<0.0001). Lastly, through the Cistrome data browser (http://dbtoolkit.cistrome.org/) we investigated putative transcriptional regulators and we performed gene set enrichment analysis in Enrichr server (https://maayanlab.cloud/Enrichr/) to identify related biological processes. Nineteen factors were identified to be putative regulators of PBX4 and gene set enrichment analysis showed that biological processes related to cell cycle and cell proliferation were enriched (GO:0051726: CDK8, JUN, JUND, and IRF1, P=0.001). In conclusion, our study identified PBX4 as a potential novel oncopromoter in CRC and its overexpression was found to be associated with increased risk for worse survival rate.
PMID:35261789 | PMC:PMC8899996