The accurate description of the mechanical properties of spinal cord tissue benefits to clinical evaluation of spinal cord injuries and is a required input for analysis tools such as finite element models. Unfortunately, available data in the literature generally relate mechanical properties of the spinal cord under quasi-static loading conditions, which is not adapted to the study of traumatic behavior, as neurological tissue adopts a viscoelastic behavior. Thus, the objective of this study is to describe mechanical properties of the spinal cord up to mechanical damage, under dynamic loading conditions. A total of 192 porcine cervical to lumbar spinal cord samples were compressed in a transverse direction. Loading conditions included ramp tests at 0.5, 5 or 50 s–1 and cyclic loading at 1, 10 or 20 Hz. Results showed that spinal cord behavior was significantly influenced by strain rate. Mechanical damage occurred at 0.64, 0.68 and 0.73 strains for 0.5, 5 or 50 s–1 loadings, respectively. Variations of behavior between the tested strain rates were explained by cyclic loading results, which revealed behavior more or less viscous depending on strain rate. Also, a parameter (stress multiplication factor) was introduced to allow transcription of a stress–strain behavior curve to different strain rates. This factor was described and was significantly different for cervical, thoracic and lumbar vertebral heights, and for the strain rates evaluated in this study.
from #Medicine via ola Kala on Inoreader http://ift.tt/28PvWBx
via IFTTT