Abstract
This study investigated 247 Escherichia coli isolates collected from four cattle farms to characterize aminoglycoside-modifying enzyme (AME) genes, their plasmid replicons and transferability. Out of 247 isolates a high number of isolates (total 202; 81.78%) were found resistant to various antibiotics by disc-diffusion. Of the 247 strains 139 (56.3%) were resistant to streptomycin and other antibiotics resistance followed as tetracycline (12.15%), ampicillin (7%), chloramphenicol (5.7%) and trimethoprim-sulfamethoxazole (0.8%). Among 247 isolates B1 was the predominant Phylogenetic group identified, which makes up 151 isolates (61.1%), followed by group A (27.9%), D (7%) and B2 (4%). Out of 139 isolates investigated for AME, 130 (93.5%) isolates carried at least one AME gene. aph3''-1a and aph3''-1b (46%) were the principal genes detected, followed by aac3-IVa (34.5%). ant2''-1a was the least detected gene (2.2%). 9 (6.5%) strains carried no AME genes. 12 (63.2%) among 19 isolates transferred AME gene to a recipient and aph3'-1a was the dominant transferred gene. Transferability mainly occurred via the IncFIB replicon-type (52.6%). Pulsed-field gel electrophoresis (PFGE) typing demonstrated a higher degree of diversity with 14 distinct cluster types. This result suggests commensal microflora from food-producing animals has a tremendous ability to harbor and transfer AME genes, and poses potential risk by dissemination of resistance to humans through food-chain.http://ift.tt/2sdhtbX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.