The structural distinctiveness of orthosteric ligand‐binding sites of novel β2‐AR conformers in the presence of ICL3 was revealed. Using a docking protocol each receptor conformation was classified via its binding affinity to selected ligands with known efficacy. This work's main goal was to reveal many subtle features of the ligand‐binding site, presenting alternative conformations. Some of the classified conformers were proposed as important targets to be used in virtual screening experiments that were often limited to a single x‐ray structure.
Abstract
This study investigates the structural distinctiveness of orthosteric ligand‐binding sites of several human β2 adrenergic receptor (β2‐AR) conformations that have been obtained from a set of independent Molecular Dynamics (MD) simulations in the presence of intracellular loop 3 (ICL3). A docking protocol was established in order to classify each receptor conformation via its binding affinity to selected ligands with known efficacy. This work's main goal was to reveal many subtle features of the ligand‐binding site, presenting alternative conformations, which might be considered as either, active‐ or inactive‐like, but mostly specific for that ligand. Agonists, inverse agonists, and antagonists were docked to each MD conformer with distinct binding pockets, using different docking tools and scoring functions. Mostly favored receptor conformation persistently observed in all docking/scoring evaluations was classified as active or inactive based on the type of ligand's biological effect. Classified MD conformers were further tested for their ability to discriminate agonists from inverse agonists/antagonists and several conformers were proposed as important targets to be used in virtual screening experiments that were often limited to a single x‐ray structure.
This article is protected by copyright. All rights reserved.
http://bit.ly/2RLtqor
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.