Abstract
Highly efficient solution-processable emitters, especially deep-blue emitters, are greatly desired to develop low-cost and low-energy-consumption organic light-emitting diodes (OLEDs). A recently developed class of potentially metal-free emitters, thermally activated delayed fluorescence (TADF) materials, are promising candidates, but solution-processable TADF materials with efficient blue emissions are not well investigated. In this study, first the requirements for the design of efficient deep-blue TADF materials are clarified, on the basis of which, adamantyl-substituted TADF molecules are developed. The substitution not only endows high solubility and excellent thermal stability but also has a critical impact on the molecular orbitals, by pushing up the lowest unoccupied molecular orbital energy and triplet energy of the molecules. In the application to OLEDs, an external quantum efficiency (EQE) of 22.1% with blue emission having Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.19) is realized. A much deeper blue emission with CIE (0.15, 0.13) is also achieved, with an EQE of 11.2%. These efficiencies are the best yet among solution-processed TADF OLEDs of CIE y < 0.20 and y < 0.15, as far as known. This work demonstrates the validity of adamantyl substitution and paves a pathway for straightforward realization of solution-processable efficient deep-blue TADF emitters.
Adamantyl substitution strategy for designing solution-processable deep-blue thermally activated delayed fluorescence (TADF) emitters. Adamantyl fragments are introduced to organic molecular frameworks. The substitution not only endows thermal stability and solubility but also enables to control frontier orbitals and triplet energies, which are critical modifications to realize deep-blue TADF emission with high external quantum efficiencies.
http://ift.tt/2Fi3bwQ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.