Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τρίτη 27 Φεβρουαρίου 2018

Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process

Abstract

Fiber materials with different structural features, which in many cases endow the fibers extraordinary functions, are drawing considerable attention from biomedical and material researchers. Here, perfusable necklace-like knotted microfibers are presented for the first time. Additionally, a novel microfluidic spinning method facilitates the production of variable knots and channels. Not only spindle-, but also hemisphere- and petal-knotted microfibers can be controllably fabricated. Generation and perfusion of both Janus channels and helical channel in the knotted microfibers are also shown. With no need of oil and surfactant, the spinning process is highly cytocompatible. The potential bioengineering and biomedical application of the knotted hollow microfiber is demonstrated by its cell-encapsulation feasibility and the unique liver acinus-like diffusion gradient in the knot. The merits of perfusability, cytocompatibility, and structural diversity of the microfibers may open more avenues for further material and biomedical investigation.

Thumbnail image of graphical abstract

Novel microfibers with diverse knots and perfusable channels are fabricated controllably with an oil-free microfluidic approach. With the mild aqueous spinning process, direct cell encapsulation and culture in the knotted fibers can be realized easily. A unique diffusion gradient mimicking the nutrient supply in liver acinus further demonstrates the potential application of the microfibers in biomedical investigation.



http://ift.tt/2BUT8Ph

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.