Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Παρασκευή 16 Φεβρουαρίου 2018

Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine

Abstract

Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.

Thumbnail image of graphical abstract

Stem-cell-based therapies have the potential to treat various diseases. A main obstacle, however, is the uncontrolled differentiation of implanted stem cells. Material-based 3D assemblies of stem cells facilitate cellular interactions that are similar to those during embryogenesis. The progress and basic principles of developing 3D scaffold materials toward regenerative medicine and their advances for stem cells are reviewed.



http://ift.tt/2o2OGWz

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.