Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 1 Νοεμβρίου 2017

SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron

Reliable and precise signal transmission is essential in circuits of the auditory brainstem to encode timing with submillisecond accuracy. Globular bushy cells reliably and faithfully transfer spike signals to the principal neurons of the medial nucleus of the trapezoid body (MNTB) through the giant glutamatergic synapse, the calyx of Held. Thus, the MNTB works as a relay nucleus that preserves the temporal pattern of firing at high frequency. Using whole-cell patch-clamp recordings, we observed a K+ conductance mediated by small-conductance calcium-activated potassium (SK) channels in the MNTB neurons from rats of either sex. SK channels were activated by intracellular Ca2+ sparks and mediated spontaneous transient outward currents in developing MNTB neurons. SK channels were also activated by Ca2+ influx through voltage-gated Ca2+ channels and synaptically activated NMDA receptors. Blocking SK channels with apamin depolarized the resting membrane potential, reduced resting conductance, and affected the responsiveness of MNTB neurons to signal inputs. Moreover, SK channels were activated by action potentials and affected the spike afterhyperpolarization. Blocking SK channels disrupted the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons and induced extra postsynaptic action potentials in response to presynaptic firing. These data reveal that SK channels play crucial roles in regulating the resting properties and maintaining reliable signal transmission of MNTB neurons.

SIGNIFICANCE STATEMENT Reliable and precise signal transmission is required in auditory brainstem circuits to localize the sound source. The calyx of Held synapse in the mammalian medial nucleus of the trapezoid body (MNTB) plays an important role in sound localization. We investigated the potassium channels that shape the reliability of signal transfer across the calyceal synapse and observed a potassium conductance mediated by small-conductance calcium-activated potassium (SK) channels in rat MNTB principal neurons. We found that SK channels are tonically activated and contribute to the resting membrane properties of MNTB neurons. Interestingly, SK channels are transiently activated by calcium sparks and calcium influx during action potentials and control the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons.



http://ift.tt/2zWMxzy

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.