Purpose: The B-cell antigen CD20 provides a target for antibody-based positron emission tomography (immunoPET). We engineered antibody fragments targeting human CD20 and studied their potential as immunoPET tracers in transgenic mice (huCD20TM) and in a murine lymphoma model expressing human CD20. Experimental Design: Anti-CD20 cys-diabody (cDb) and cys-minibody (cMb) based on rituximab (Rx) and obinutuzumab (GA101) were radioiodinated and used for immunoPET imaging of a murine lymphoma model. Pairwise comparison of obinutuzumab-based antibody fragments labeled with residualizing (89Zr) versus non-residualizing (124I) radionuclides by region of interest (ROI) analysis of serial PET images was conducted both in the murine lymphoma model and in huCD20TM to asses antigen modulation in vivo. Results: 124I-GAcDb and 124I-GAcMb produced high-contrast immunoPET images of B-cell lymphoma and outperformed the respective rituximab-based tracers. ImmunoPET imaging of huCD20TM showed specific uptake in lymphoid tissues. The use of the radiometal 89Zr as alternative label for GAcDb and GAcMb yielded greater target-specific uptake and retention compared with 124I-labeled tracers. Pairwise comparison of 89Zr- and 124I-labeled GAcDb and GAcMb allowed assessment of in vivo internalization of CD20/antibody complexes and revealed that CD20 internalization differs between malignant and endogenous B cells. Conclusions: These obinutuzumab-based PET tracers have the ability to noninvasively and quantitatively monitor CD20-expression and have revealed insights into CD20 internalization upon antibody binding in vivo. Because they are based on a humanized mAb they have the potential for direct clinical translation and could improve patient selection for targeted therapy, dosimetry prior to radioimmunotherapy (RIT), and prediction of response to therapy.
http://ift.tt/2xPhzvU
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.