Abstract
The expression of PD-L1 in breast cancer is associated with estrogen receptor negativity, chemoresistance, and epithelial-to-mesenchymal transition (EMT); all of which are common features of a highly tumorigenic subpopulation of cancer cells termed cancer stem cells (CSCs). Hitherto, the expression and intrinsic role of PD-L1 in the dynamics of breast CSCs has not been investigated. To address this issue, we used transcriptomic datasets, proteomics and several in vitro and in vivo assays. Expression profiling of a large breast cancer dataset (530 patients) showed statistically significant correlation (p<0.0001, r=0.36) between PD-L1 expression and stemness score of breast cancer. Specific knockdown of PD-L1 using ShRNA revealed its critical role in the expression of the embryonic stem cell transcriptional factors: OCT-4A and Nanog as well as the stemness factor, BMI1. Conversely, these factors could be induced upon PD-L1 ectopic expression in cells that are normally PD-L1 negative. Global proteomic analysis hinted for the central role of AKT in the biology of PD-L1 expressing cells. Indeed, PD-L1 positive effect on OCT-4A and Nanog was dependant on AKT activation. Most importantly, downregulation of PD-L1 compromised the self-renewal capability of breast CSCs in vitro and in vivo as shown by tumorsphere formation assay and extreme limiting dilution assay (ELDA), respectively. This study demonstrates a novel role for PD-L1 in sustaining stemness of breast cancer cells and identifies the subpopulation and its associated molecular pathways that would be targeted upon anti-PD-L1 therapy. This article is protected by copyright. All rights reserved.
http://ift.tt/2rxgAsR
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.