Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 21 Ιουνίου 2017

Bioinspired Microfibers with Embedded Perfusable Helical Channels

Materials with microchannels have attracted increasing attention due to their promising perfusability and biomimetic geometry. However, the fabrication of microfibers with more geometrically complex channels in the micro- or nanoscale remains a big challenge. Here, a novel method for generating scalable microfibers with consecutive embedded helical channels is presented using an easily made coaxial microfluidic device. The characteristics of the helical channel can be accurately controlled by simply adjusting the flow rate ratio of the fluids. The mechanism of the helix formation process is theorized with newly proposed heterogenerated rope-coil effect, which enhances the tunability of helical patterns and promotes the comprehension of this abnormal phenomenon. Based on this effect, microfibers with embedded Janus channels and even double helical channels are generated in situ by changing the design of the device. The uniqueness and potential applications of these tubular microfibers are also demonstrated by biomimetic supercoiling structures as well as the perfusable and permeable spiral vessel.

Thumbnail image of graphical abstract

Novel microfibers with embedded helical channels are controllably fabricated in situ by a microfluidic strategy. Embedded double helical channels are fabricated with the guide of a proposed mechanism, which allows the construction of more complex 3D tissues in vitro. Successful perfusion and permeation in helical channels is also achieved as a demonstration of a spiral vessel.



http://ift.tt/2sTj0qf

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.