Abstract
Metal(loid)s found at many sites as a result of human activities induce contamination of ecosystems, which threatens the environment and public health. Several approaches can be used in order to reduce such negative impacts of pollutants, and among them, phytoremediation has gained attractive attention. The objective of the present study was to assess the capacity of Populus euramericana, Dorskamp cultivar, for the phytoremediation of metal(loid)s on a technosol (former mining site) highly contaminated mainly with Pb and As, and amended with biochars having different particle sizes. In a 46-day mesocosm glasshouse pot experiment, technosol was mixed at three ratios (0, 2, or 5% w/w) with four different hardwood-derived biochars (with various particle sizes) in order to study the biochar application rate and particle size effects on soil pore water (SPW) characteristics, on poplar growth, and on metal(loid) distribution and concentrati ons in the plant organs. The results showed that all biochars tested had a significant impact on several SPW physico-chemical parameters. Especially, biochar additions reduced available Pb concentrations but with no effect on As. In such conditions, Populus growth in amended technosol increased whatever rate and particle size of biochar used. Metal(loid) concentrations and repartition in plant organs showed the following: (1) for Pb, a higher root concentration with low aerial part translocation, which depended on biochar used, and (2) for As, mainly a root sequestration. We identified biochar with the finest particle size and combined with P. euramericana, Dorskamp, was the most suitable as remediation tools for Pb stabilization in post-mining contaminated soils.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.