Abstract
Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic-thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge–CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber–epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid-state fiber-shaped supercapacitor and a fiber-type lithium-ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy-storage textiles.
Macroscopic CNTs@CF hybrid fibers are fabricated by directly growing a millimeter-thick 3D porous carbon nanotube sponge layer on a single carbon fiber with high interfacial strength quantified by pull-out tests, and show potential applications in reinforced nanocomposites and high-performance fiber-shaped energy devices such as supercapacitors and lithium-ion batteries.
http://ift.tt/2C82w2Q
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.