Summary
We consider the testing of mutual independence among all entries in a $d$-dimensional random vector based on $n$ independent observations. We study two families of distribution-free test statistics, which include Kendall's tau and Spearman's rho as important examples. We show that under the null hypothesis the test statistics of these two families converge weakly to Gumbel distributions, and we propose tests that control the Type I error in the high-dimensional setting where $d >n$. We further show that the two tests are rate-optimal in terms of power against sparse alternatives and that they outperform competitors in simulations, especially when $d$ is large.http://ift.tt/2j5anSH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.