Abstract
Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m−2, top: ≈30 000 cd m−2, total: ≈73 000 cd m−2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in.−1) shows the potential of the full-color transparent display.
Extremely bright, transparent, and ultrathin quantum dot light-emitting diodes are achieved by engineering electron transport layer and quantum dots, which leads to the highest luminance (bottom: ≈43 000 cd m−2, top: ≈30 000 cd m−2 at 9 V) and transparency (90% at 550 nm) among all types of transparent displays. The ultrathin transparent quantum dot light-emitting diodes can also conformally be integrated on various curvilinear surfaces.
http://ift.tt/2y4cq3R
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.