As the downscaling of conventional semiconductor electronics becomes more and more challenging, the interest in alternative material systems and fabrication methods is growing. A novel bottom-up approach for the fabrication of high-quality single-electron transistors (SETs) that can easily be contacted electrically in a controllable manner is developed. This approach employs the self-assembly of Au nanoparticles forming the SETs, and Au nanorods forming the leads to macroscopic electrodes, thus bridging the gap between the nano- and microscale. Low-temperature electron-transport measurements reveal exemplary single-electron tunneling characteristics. SET behavior can be significantly changed, post-fabrication, using molecular exchange of the tunnel barriers, demonstrating the tunability of the assemblies. These results form a promising proof of principle for the versatility of bottom-up nanoelectronics, and toward controlled fabrication of nanoelectronic devices.
High-quality single-electron transistors (SETs) are fabricated by a newly developed, novel bottom-up approach. The approach relies on the self-assembly of Au nanoparticles, forming the SETs, and Au nanorods, serving as extended electric leads. The self-assembly is driven by the electrostatic interaction between the tailor-made molecular monolayers on the constituents of the heterogeneous assembly.
http://ift.tt/2xKm0rY
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.