Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 17 Ιουλίου 2017

Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc–Air Batteries

A critical bottleneck limiting the performance of rechargeable zinc–air batteries lies in the inefficient bifunctional electrocatalysts for the oxygen reduction and evolution reactions at the air electrodes. Hybridizing transition-metal oxides with functional graphene materials has shown great advantages due to their catalytic synergism. However, both the mediocre catalytic activity of metal oxides and the restricted 2D mass/charge transfer of graphene render these hybrid catalysts inefficient. Here, an effective strategy combining anion substitution, defect engineering, and the dopant effect to address the above two critical issues is shown. This strategy is demonstrated on a hybrid catalyst consisting of sulfur-deficient cobalt oxysulfide single crystals and nitrogen-doped graphene nanomeshes (CoO0.87S0.13/GN). The defect chemistries of both oxygen-vacancy-rich, nonstoichiometric cobalt oxysulfides and edge-nitrogen-rich graphene nanomeshes lead to a remarkable improvement in electrocatalytic performance, where CoO0.87S0.13/GN exhibits strongly comparable catalytic activity to and much better stability than the best-known benchmark noble-metal catalysts. In application to quasi-solid-state zinc–air batteries, CoO0.87S0.13/GN as a freestanding catalyst assembly benefits from both structural integrity and enhanced charge transfer to achieve efficient and very stable cycling operation over 300 cycles with a low discharge–charge voltage gap of 0.77 V at 20 mA cm−2 under ambient conditions.

Thumbnail image of graphical abstract

A high-temperature ammonolysis is proven effective for improving both the mediocre catalytic activity of metal oxides and the restricted 2D mass/charge transfer of graphene. The defect chemistries of both oxygen-vacancy-rich cobalt oxysulfides and edge-nitrogen-rich graphene nanomeshes of the hybrid catalyst lead to a remarkable improvement in electrocatalytic performance for oxygen reduction and evolution reactions.



http://ift.tt/2twnEXG

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.