Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method.
http://ift.tt/2dQyEfg
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
-
▼
Οκτωβρίου
(345)
-
▼
Οκτ 02
(16)
- Issue Information
- Peptidomics of the zebrafish Danio rerio: In searc...
- Beyond the survival and death of the deltamethrin-...
- Postural orthostatic tachycardia is not a useful d...
- A neural mechanism of cognitive control for resolv...
- New York University School of Medicine Drug Develo...
- Combustion Characterization and Model Fuel Develop...
- Hand Controlled Manipulation of Single Molecules v...
- Rapid High-throughput Species Identification of Bo...
- Molecules, Vol. 21, Pages 1323: Anti-Inflammatory ...
- Remote Sensing, Vol. 8, Pages 819: Urban Built-up ...
- Sensors, Vol. 16, Pages 1636: Conditional Entropy ...
- Metals, Vol. 6, Pages 236: Influence of Hardness, ...
- Bioengineering, Vol. 3, Pages 24: Purification of ...
- The significance of extramural venous invasion in ...
- Light-curing units used in dentistry: factors asso...
-
▼
Οκτ 02
(16)
- ► Σεπτεμβρίου (1038)
- ► Φεβρουαρίου (793)
Αναζήτηση αυτού του ιστολογίου
Κυριακή 2 Οκτωβρίου 2016
Sensors, Vol. 16, Pages 1636: Conditional Entropy and Location Error in Indoor Localization Using Probabilistic Wi-Fi Fingerprinting
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.