Airborne laser scanning (ALS) point cloud data are suitable for digital terrain model (DTM) extraction given its high accuracy in elevation. Existing filtering algorithms that eliminate non-ground points mostly depend on terrain feature assumptions or representations; these assumptions result in errors when the scene is complex. This paper proposes a new method for ground point extraction based on deep learning using deep convolutional neural networks (CNN). For every point with spatial context, the neighboring points within a window are extracted and transformed into an image. Then, the classification of a point can be treated as the classification of an image; the point-to-image transformation is carefully crafted by considering the height information in the neighborhood area. After being trained on approximately 17 million labeled ALS points, the deep CNN model can learn how a human operator recognizes a point as a ground point or not. The model performs better than typical existing algorithms in terms of error rate, indicating the significant potential of deep-learning-based methods in feature extraction from a point cloud.
http://ift.tt/2bXLoxl
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
-
▼
Σεπτεμβρίου
(1038)
-
▼
Σεπ 05
(56)
- IJERPH, Vol. 13, Pages 882: Associations of Choles...
- Water, Vol. 8, Pages 378: Assessment of Drought Ev...
- Religions, Vol. 7, Pages 115: Psalms 111–112: Big ...
- Angiogenic Effects of Collagen/Mesoporous Nanopart...
- Micromachines, Vol. 7, Pages 157: Neural Circuits ...
- IJMS, Vol. 17, Pages 1482: Pharmacogenetics Biomar...
- IJMS, Vol. 17, Pages 1479: Roles of Voltage-Gated ...
- Energies, Vol. 9, Pages 711: Chemical Flooding in ...
- IJFS, Vol. 4, Pages 17: Spatially-Aggregated Tempe...
- Sustainability, Vol. 8, Pages 898: Factors Promoti...
- Energies, Vol. 9, Pages 708: Innovative Calibratio...
- IJMS, Vol. 17, Pages 1476: MRI Dynamically Evaluat...
- IJMS, Vol. 17, Pages 1482: Pharmacogenetics Biomar...
- Epstein-Barr virus-positive mucocutaneous ulcer
- Gasterophilus (Diptera, Gasterophilidae) infestati...
- Sandflies in an urban area of transmission of visc...
- Entropy, Vol. 18, Pages 320: Using Graph and Verte...
- Econometrics, Vol. 4, Pages 37: Generalized Fracti...
- Sustainability, Vol. 8, Pages 895: Temporal Effect...
- Coatings, Vol. 6, Pages 39: Deposition and Charact...
- Polymers, Vol. 8, Pages 331: PLA with Intumescent ...
- Sensors, Vol. 16, Pages 1427: Continuous Indoor Po...
- Sensors, Vol. 16, Pages 1429: Neural Network-Based...
- Crystals, Vol. 6, Pages 108: Crystallography of Re...
- IJMS, Vol. 17, Pages 1476: MRI Dynamically Evaluat...
- Cosmetics, Vol. 3, Pages 32: Packaging Evaluation ...
- Buildings, Vol. 6, Pages 36: Thermal Assessment of...
- Viruses, Vol. 8, Pages 245: Analysis of the Preval...
- Molecules, Vol. 21, Pages 1174: Recent Advances in...
- Molecules, Vol. 21, Pages 1177: Palladium(II) Cata...
- Energies, Vol. 9, Pages 712: Influence of Insulati...
- Vaccines, Vol. 4, Pages 30: T-Regulatory Cells and...
- Micromachines, Vol. 7, Pages 158: Energy Dissipati...
- The Effect of Advanced Motherhood on Newborn Offsp...
- Safety of Bronchoscopy in Patients with Echocardio...
- Sedation for Bronchoscopy and Complications in Obe...
- High Diagnostic Value of a New Real-Time Pneumocys...
- Increased CD69 Expression on Peripheral Eosinophil...
- Cover Picture: A new fluorescent dye for cell trac...
- Contents: J. Biophotonics 9/2016
- Issue Information: J. Biophotonics 9/2016
- Remote Sensing, Vol. 8, Pages 731: Integration of ...
- Remote Sensing, Vol. 8, Pages 730: Deep-Learning-B...
- JMSE, Vol. 4, Pages 57: Erratum: Chen, C.Y.; Ward,...
- The Prognostic Role of Obstructive Sleep Apnea at ...
- Preparation of Thermosensitive Gel for Controlled ...
- Key Challenges and Opportunities Associated with t...
- Meta-Analysis of the Association between Vitiligo ...
- Analyzing the miRNA-Gene Networks to Mine the Impo...
- rLj-RGD3, a Novel Three-RGD-Motif-Containing Recom...
- Autoimmunity and the microbiome: T-cell receptor m...
- Antibodies, Vol. 5, Pages 19: Antibody Aggregation...
- Separations, Vol. 3, Pages 27: Chromatographic Stu...
- Water, Vol. 8, Pages 379: Soil CO2 Uptake in Deser...
- Climate, Vol. 4, Pages 43: Polar Cyclone Identific...
- Remote Sensing, Vol. 8, Pages 732: Mapping Daily A...
-
▼
Σεπ 05
(56)
- ► Φεβρουαρίου (793)
Αναζήτηση αυτού του ιστολογίου
Δευτέρα 5 Σεπτεμβρίου 2016
Remote Sensing, Vol. 8, Pages 730: Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.