Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τρίτη 25 Σεπτεμβρίου 2018

Genomic characterization of six virus-associated cancers identifies changes in the tumor immune microenvironment and altered genetic programs

Viruses affect approximately 20% of all human cancers and induce expression of immunogenic viral oncoproteins that make these tumors potent targets for immune checkpoint inhibitors. In this study, we apply computational tools to The Cancer Genome Atlas and other genomic datasets to define how virus infection shapes the tumor immune microenvironment and genetic architecture of 6 virus-associated tumor types. Across cancers, the cellular composition of the microenvironment varied by viral status, with virus-positive tumors often exhibiting increased infiltration of cytolytic cell types compared to their virus-negative counterparts. Analyses of the infiltrating T cell receptor repertoire in these patients revealed that Epstein-Barr virus infection was associated with decreased receptor diversity in multiple cancers, suggesting an antigen-driven clonal T cell response. Tissue-specific gene expression signatures capturing virus-associated transcriptomic changes successfully predicted virus status in independent datasets and were associated with both immune- and proliferation-related features that were predictive of patient prognosis. Together, the analyses presented suggest viruses have distinct effects in different tumors, with implications for immunotherapy.

https://ift.tt/2Q7Xt5b

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.