Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τρίτη 31 Ιουλίου 2018

Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma

Glioblastoma (GBM) is the most common primary brain malignancy and carries an extremely poor prognosis. Recent molecular studies revealed the CDK4/6-Rb-E2F axis and receptor tyrosine kinase (RTK) signaling to be deregulated in most GBM, creating an opportunity to develop more effective therapies by targeting both pathways. Using a phospho-RTK protein array, we found that both c-Met and TrkA-B pathways were significantly activated upon CDK4/6 inhibition in GBM cells. We therefore investigated the efficacy of combined CDK4/6 and c-Met/TrkA-B inhibition against GBM. We show that both c-Met and TrkA-B pathways transactivate each other, and targeting both pathways simultaneously results in more efficient pathway suppression. Mechanistically, inhibition of CDK4/6 drove NF-κB–mediated upregulation of hepatocyte growth factor, brain-derived neurotrophic factor, and nerve growth factor that in turn activated both c-Met and TrkA-B pathways. Combining the CDK4/6 inhibitor abemaciclib with the c-Met/Trk inhibitor altiratinib or the corresponding siRNAs induced apoptosis, leading to significant synergy against GBM. Collectively, these findings demonstrate that the activation of c-Met/TrkA-B pathways is a novel mechanism involved in therapeutic resistance of GBM to CDK4/6 inhibition and that dual inhibition of c-Met/Trk with CDK4/6 should be considered in future clinical trials.Significance: CDK4/6 inhibition in glioblastoma activates the c-Met and TrkA-B pathways mediated by NF-κB and can be reversed by a dual c-Met/Trk inhibitor. Cancer Res; 78(15); 4360–9. ©2018 AACR.

https://ift.tt/2O1grtk

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.