Abstract
Climate change has a disproportionally large impact on alpine soil ecosystems, leading to pronounced changes in soil microbial diversity and function associated with effects on biogeochemical processes at the local and supraregional scales. However, due to restricted accessibility, high-altitude soils remain largely understudied and a considerable heterogeneity hampers the comparability of different alpine studies. Here, we highlight differences and similarities between alpine and arctic ecosystems, and we discuss the impact of climatic variables and associated vegetation and soil properties on microbial ecology. We consider how microbial alpha-diversity, community structures and function change along altitudinal gradients and with other topographic features such as slope aspect. In addition, we focus on alpine permafrost soils, harboring a surprisingly large unknown microbial diversity and on microbial succession along glacier forefield chronosequences constituting the most thoroughly studied alpine habitat. Finally, highlighting experimental approaches, we present climate change studies showing shifts in microbial community structures and function in response to warming and altered moisture, interestingly with some contradiction. Collectively, despite harsh environmental conditions, many specially adapted microorganisms are able to thrive in alpine environments. Their community structures strongly correlate with climatic, vegetation and soil properties and thus closely mirror the complexity and small-scale heterogeneity of alpine soils.https://ift.tt/2J8muO5
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.