Abstract
Drugs often have undesired side effects. In the heart, they can induce lethal arrhythmias such as torsades de pointes. The risk evaluation of a new compound is costly and can take a long time, which often hinders the development of new drugs. Here we establish a high resolution, multiscale computational model to quickly assess the cardiac toxicity of new and existing drugs. The input of the model is the drug-specific current block from single cell electrophysiology; the output is the spatio-temporal activation profile and the associated electrocardiogram. We demonstrate the potential of our model for a low risk drug, ranolazine, and a high risk drug, quinidine: For ranolazine, our model predicts a prolonged QT interval of 19.4% compared to baseline and a regular sinus rhythm at 60.15 beats per minute. For quinidine, our model predicts a prolonged QT interval of 78.4% and a spontaneous development of torsades de pointes both in the activation profile and in the electrocardiogram. Our model reveals the mechanisms by which electrophysiological abnormalities propagate across the spatio-temporal scales, from specific channel blockage, via altered single cell action potentials and prolonged QT intervals, to the spontaneous emergence of ventricular tachycardia in the form of torsades de pointes. Our model could have important implications for researchers, regulatory agencies, and pharmaceutical companies on rationalizing safe drug development and reducing the time-to-market of new drugs. This article is protected by copyright. All rights reserved.
http://ift.tt/2sqJ6ST
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.