Abstract
A novel method is described for the direct growth of patterned graphene on dielectric substrates by chemical vapor deposition (CVD) in the presence of Cu vapor and using a solid aromatic carbon source, 1,2,3,4-tetraphenylnapthalene (TPN), as the precursor. The UV/O3 treatment of the TPN film both crosslinks TPN and results in a strong interaction between the substrate and the TPN that prevents complete sublimation of the carbon source from the substrate during CVD. Substrate-adhered crosslinked TPN is successfully converted to graphene on the substrate without any organic contamination. The graphene synthesized by this method shows excellent mechanical and chemical stability. This process also enables the simultaneous patterning of graphene materials, which can thus be used as transparent electrodes for electronic devices. The proposed method for the synthesis directly on substrates of patterned graphene is expected to have wide applications in organic and soft hybrid electronics.
Highly stable patterned graphene is directly synthesized on insulator substrates via a chemical vapor deposition method using a surface-adhered solid polycyclic aromatic hydrocarbon source. The synthesized graphene is strongly bound to the substrate by interfacial adhesion bonding resulting from UV/ozone pretreament. It successfully leads to improve the mechanical/chemical stability of the synthesized graphene.
http://ift.tt/2ENz9EQ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.