Abstract
Most of the current nanoparticle-based therapeutics worldwide failing in clinical trials face three major challenges: (i) lack of an optimum drug delivery platform with precise composition, (ii) lack of a method of directly monitoring the fate of a specific drug rather than using any other labelling molecules as a compromise, and (iii) lack of reliable cancer models with high fidelity for drug screen and evaluation. Here, starting from a PP2A inhibitor demethylcantharidin (DMC) and cisplatin, the design of a dual sensitive dual drug backboned shattering polymer (DDBSP) with exact composition at a fixed DMC/Pt ratio for precise nanomedicine is shown. DDBSP self-assembled nanoparticle (DD-NP) can be triggered intracellularly to break down in a chain-shattering manner to release the dual drugs payload. Moreover, DD-NP with extremely high Pt heavy metal content in the polymer chain can directly track the drug itself via Pt-based drug-mediated computer tomography and ICP-MS both in vitro and in vivo. Finally, DD-NP is used to eradicate the tumor burden on a high-fidelity patient-derived lung cancer model for the first time.
Dual drug backboned shattering polymeric theranostic nanomedicine that can be triggered intracellularly to breakdown in a chain-shattering manner to release the dual drugs payload is developed. It can directly track the drug itself via Pt-based drug-mediated computer tomography and eradicate the tumor burden on a high-fidelity patient-derived lung cancer model.
http://ift.tt/2DoQhzV
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.