Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Σάββατο 18 Νοεμβρίου 2017

Extending antigen release from particulate vaccines results in enhanced antitumor immune response.

Extending antigen release from particulate vaccines results in enhanced antitumor immune response.

J Control Release. 2017 Nov 13;:

Authors: Kapadia CH, Tian S, Perry JL, Sailer D, Christopher Luft J, DeSimone JM

Abstract
Tumor-specific CD8(+) cytotoxic T lymphocytes (CTLs) play a critical role in an anti-tumor immune response. However, vaccination intended to elicit a potent CD8(+) T cell responses employing tumor-associated peptide antigens, are typically ineffective due to poor immunogenicity. Previously, we engineered a polyethylene glycol (PEG) hydrogel-based subunit vaccine for the delivery of an antigenic peptide and CpG (adjuvant) to elicit potent CTLs. In this study, we further examined the effect of antigen release kinetics on their induced immune responses. A CD8(+) T cell epitope peptide from OVA (CSIINFEKL) and CpG were co-conjugated to nanoparticles utilizing either a disulfide or a thioether linkage. Subsequent studies comparing peptide release rates as a function of linker, determined that the thioether linkage provided sustained release of peptide over 72h. Ability to control the release of peptide resulted in both higher and prolonged antigen presentation when compared to disulfide-linked peptide. Both NP vaccine formulations resulted in activation and maturation of bone marrow derived dendritic cells (BMDCs) and induced potent CD8(+) T cell responses when compared to soluble antigen and soluble CpG. Immunization with either disulfide or thioether linked vaccine constructs effectively inhibited EG7-OVA tumor growth in mice, however only treatment with the thioether linked vaccine construct resulted in enhanced survival.

PMID: 29146244 [PubMed - as supplied by publisher]



http://ift.tt/2zOegW6

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.