Abstract
The exploration of new porous hybrid materials is of great importance because of their unique properties and promising applications in separation of materials, catalysis, etc. Herein, for the first time, by integration of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), a new type of MOF@COF core–shell hybrid material, i.e., NH2-MIL-68@TPA-COF, with high crystallinity and hierarchical pore structure, is synthesized. As a proof-of-concept application, the obtained NH2-MIL-68@TPA-COF hybrid material is used as an effective visible-light-driven photocatalyst for the degradation of rhodamine B. The synthetic strategy in this study opens up a new avenue for the construction of other MOF–COF hybrid materials, which could have various promising applications.
By integration of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), a new type of MOF@COF core–shell hybrid material, i.e., NH2-MIL-68@TPA-COF, with high crystallinity and hierarchical pore structure, is synthesized. The obtained hybrid material can be used as an effective visible-light-driven photocatalyst for the degradation of rhodamine B.
http://ift.tt/2yYSbFg
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.