Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 15 Ιανουαρίου 2018

Atypical G Protein {beta}5 Promotes Cardiac Oxidative Stress, Apoptosis, and Fibrotic Remodeling in Response to Multiple Cancer Chemotherapeutics

The clinical use of multiple classes of cancer chemotherapeutics is limited by irreversible, dose-dependent, and sometimes life-threatening cardiotoxicity. Though distinct in their mechanisms of action, doxorubicin, paclitaxel, and 5-FU all induce rapid and robust upregulation of atypical G protein Gβ5 in the myocardium correlating with oxidative stress, myocyte apoptosis, and the accumulation of proinflammatory and profibrotic cytokines. In ventricular cardiac myocytes (VCM), Gβ5 deficiency provided substantial protection against the cytotoxic actions of chemotherapeutics, including reductions in oxidative stress and simultaneous attenuation of ROS-dependent activation of the ATM and CaMKII proapoptotic signaling cascades. In addition, Gβ5 loss allowed for maintenance of Δψm, basal mitochondrial calcium uniporter expression, and mitochondrial Ca2+ levels, effects likely to preserve functional myocyte excitation–contraction coupling. The deleterious effects of Gβ5 are not restricted to VCM, however, as Gβ5 knockdown also reduces chemotherapy-induced release of proinflammatory cytokines (e.g., TNFα), hypertrophic factors (e.g., ANP), and profibrotic factors (e.g., TGFβ1) from both VCM and ventricular cardiac fibroblasts, with the most dramatic reduction occurring in cocultured cells. Our experiments suggest that Gβ5 facilitates the myofibroblast transition, the persistence of which contributes to pathologic remodeling and heart failure. The convergence of Gβ5-mediated, ROS-dependent signaling pathways in both cell types represents a critical etiological factor in the pathogenesis of chemotherapy-induced cardiotoxicity. Indeed, intracardiac injection of Gβ5-targeted shRNA allowed for heart-specific protection against the damaging impact of chronic chemotherapy. Together, our results suggest that inhibition of Gβ5 might represent a novel means to circumvent cardiotoxicity in cancer patients whose treatment regimens include anthracyclines, taxanes, or fluoropyrimidines.Significance: These findings suggest that inhibiting an atypical G-protein might provide a strategy to limit the cardiotoxicity in cancer patients treated with anthracyclines, taxanes, or fluoropyrimidines. Cancer Res; 78(2); 528–41. ©2017 AACR.

http://ift.tt/2D5m9W1

Delivering Type I Interferon to Dendritic Cells Empowers Tumor Eradication and Immune Combination Treatments

An ideal generic cancer immunotherapy should mobilize the immune system to destroy tumor cells without harming healthy cells and remain active in case of recurrence. Furthermore, it should preferably not rely on tumor-specific surface markers, as these are only available in a limited set of malignancies. Despite approval for treatment of various cancers, clinical application of cytokines is still impeded by their multiple toxic side effects. Type I IFN has a long history in the treatment of cancer, but its multifaceted activity pattern and complex side effects prevent its clinical use. Here we develop AcTakines (Activity-on-Target cytokines), optimized (mutated) immunocytokines that are up to 1,000-fold more potent on target cells, allowing specific signaling in selected cell types only. Type I IFN-derived AcTaferon (AFN)-targeting Clec9A+ dendritic cells (DC) displayed strong antitumor activity in murine melanoma, breast carcinoma, and lymphoma models and against human lymphoma in humanized mice without any detectable toxic side effects. Combined with immune checkpoint blockade, chemotherapy, or low-dose TNF, complete tumor regression and long-lasting tumor immunity were observed, still without adverse effects. Our findings indicate that DC-targeted AFNs provide a novel class of highly efficient, safe, and broad-spectrum off-the-shelf cancer immunotherapeutics with no need for a tumor marker.Significance: Targeted type I interferon elicits powerful antitumor efficacy, similar to wild-type IFN, but without any toxic side effects. Cancer Res; 78(2); 463–74. ©2017 AACR.

http://ift.tt/2DBGV0A

Vitamin C Sensitizes Melanoma to BET Inhibitors

Bromodomain and extraterminal inhibitors (BETi) are promising cancer therapies, yet prominent side effects of BETi at effective doses have been reported in phase I clinical trials. Here, we screened a panel of small molecules targeting epigenetic modulators against human metastatic melanoma cells. Cells were pretreated with or without ascorbate (vitamin C), which promotes DNA demethylation and subsequently changes the sensitivity to drugs. Top hits were structurally unrelated BETi, including JQ1, I-BET151, CPI-203, and BI-2536. Ascorbate enhanced the efficacy of BETi by decreasing acetylation of histone H4, but not H3, while exerting no effect on the expression of BRD proteins. Histone acetyltransferase 1 (HAT1), which catalyzes H4K5ac and H4K12ac, was downregulated by ascorbate mainly via the TET-mediated DNA hydroxymethylation pathway. Loss of H4ac, especially H4K5ac and H4K12ac, disrupted the interaction between BRD4 and H4 by which ascorbate and BETi blocked the binding of BRD4 to acetylated histones. Cotreatment with ascorbate and JQ1 induced apoptosis and inhibited proliferation of cultured melanoma cells. Ascorbate deficiency as modeled in Gulo−/− mice diminished the treatment outcome of JQ1 for melanoma tumorgraft. In contrast, ascorbate supplementation lowered the effective dose of JQ1 needed to successfully inhibit melanoma tumors in mice. On the basis of our findings, future clinical trials with BETi should consider ascorbate levels in patients. Furthermore, ascorbate supplementation might help reduce the severe side effects that arise from BETi therapy by reducing the dosage necessary for treatment.Significance: This study shows that ascorbate can enhance the efficacy of BET inhibitors, providing a possible clinical solution to challenges arising in phase I trials from the dose-dependent side effects of this class of epigenetic therapy. Cancer Res; 78(2); 572–83. ©2017 AACR.

http://ift.tt/2DCQCvL

PD2/PAF1 at the Crossroads of the Cancer Network

Pancreatic differentiation 2 (PD2)/RNA polymerase II–associated factor 1 (PAF1) is the core subunit of the human PAF1 complex (PAF1C) that regulates the promoter-proximal pausing of RNA polymerase II as well as transcription elongation and mRNA processing and coordinates events in mRNA stability and quality control. As an integral part of its transcription-regulatory function, PD2/PAF1 plays a role in posttranslational histone covalent modifications as well as regulates expression of critical genes of the cell-cycle machinery. PD2/PAF1 alone, and as a part of PAF1C, provides distinct roles in the maintenance of self-renewal of embryonic stem cells and cancer stem cells, and in lineage differentiation. Thus, PD2/PAF1 malfunction or its altered abundance is likely to affect normal cellular functions, leading to disease states. Indeed, PD2/PAF1 is found to be upregulated in poorly differentiated pancreatic cancer cells and has the capacity for neoplastic transformation when ectopically expressed in mouse fibroblast cells. Likewise, PD2/PAF1 is upregulated in pancreatic and ovarian cancer stem cells. Here, we concisely describe multifaceted roles of PD2/PAF1 associated with oncogenic transformation and implicate PD2/PAF1 as an attractive target for therapeutic development to combat malignancy. Cancer Res; 78(2); 313–9. ©2018 AACR.

http://ift.tt/2D7on77

LSR Antibody Therapy Inhibits Ovarian Epithelial Tumor Growth by Inhibiting Lipid Uptake

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, but it still lacks effective treatment options. In this study, we utilized proteomic technology to identify lipolysis-stimulated lipoprotein receptor (LSR) as a new tumor antigen of EOC. Immunohistochemical analysis of EOC tissues in conjunction with survival analysis of EOC patients showed that high expression of LSR is associated with poor prognosis. High LSR expression also occurred in tumor metastases including to the lymph node and omentum. To evaluate the possible benefits of blocking this antigen in EOC, we raised a new monoclonal antibody (mAb) to human LSR (hLSR). In mouse xenograft models of hLSR+ EOC (cell lines or patient-derived tumors), we found that administration of anti-hLSR mAb inhibited tumor growth in a manner independent of both antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Mechanistic investigations showed that hLSR expression increased incorporation of very-low-density lipoprotein (VLDL) into EOC cells and that anti-hLSR mAb inhibited lipid uptake in vitro and in vivo. Moreover, VLDL promoted cell proliferation in hLSR-positive EOC cells in vitro, and this effect was inhibited by anti-hLSR mAb. While the anti-hLSR mAb studied cross reacted with the mouse antigen, we observed no adverse effects on normal organs and lipid metabolism in murine hosts. Our findings suggest that hLSR plays a key functional role in EOC development and that this antigen can be therapeutically targeted by specific mAb to improve EOC treatment.Significance: These findings offer preclinical evidence of the therapeutic efficacy of a novel targeted antibody therapy against deadly epithelial ovarian cancers. Cancer Res; 78(2); 516–27. ©2017 AACR.

http://ift.tt/2DAmnFN

Development of Chemotherapy with Cell-Cycle Inhibitors for Adult and Pediatric Cancer Therapy

Preclinical and clinical development of agents that inhibit cell-cycle progression have brought an understanding of the feasibility of targeting various cell-cycle regulators in patients with cancer. Small molecule inhibitors targeting key proteins that participate in cell-cycle progression including the cyclin-dependent kinases and checkpoint kinases induce cell-cycle arrest and apoptosis in neoplastic cells. Early phase I studies demonstrate targeted inhibitors can be administered safely in adult and pediatric cancer patients, but these agents generally show limited clinical benefits as single agents. In this review, we discuss biological mechanisms that support dual combination strategies of cell-cycle inhibition with chemotherapeutic agents that are anticipated to achieve rationally targeted therapies for cancer patients. The rationale for evaluating these combination strategies is that DNA damage renders tumors highly responsive to irreversible cell-cycle arrest therapy. This approach is predicted to generate less intensive therapies and to maximize the efficacy of individual agents against solid tumors and hematologic malignancies. Cancer Res; 78(2); 320–5. ©2018 AACR.

http://ift.tt/2Dz7BPr

Interferon-{gamma} Signaling in Melanocytes and Melanoma Cells Regulates Expression of CTLA-4

CTLA4 is a cell surface receptor on T cells that functions as an immune checkpoint molecule to enforce tolerance to cognate antigens. Anti–CTLA4 immunotherapy is highly effective at reactivating T-cell responses against melanoma, which is postulated to be due to targeting CTLA4 on T cells. Here, we report that CTLA4 is also highly expressed by most human melanoma cell lines, as well as in normal human melanocytes. Interferon-γ (IFNG) signaling activated the expression of the human CTLA4 gene in a melanocyte and melanoma cell–specific manner. Mechanistically, IFNG activated CTLA4 expression through JAK1/2-dependent phosphorylation of STAT1, which bound a specific gamma-activated sequence site on the CTLA4 promoter, thereby licensing CBP/p300-mediated histone acetylation and local chromatin opening. In melanoma cell lines, elevated baseline expression relied upon constitutive activation of the MAPK pathway. Notably, RNA-seq analyses of melanoma specimens obtained from patients who had received anti–CTLA4 immunotherapy (ipilimumab) showed upregulation of an IFNG-response gene expression signature, including CTLA4 itself, which correlated significantly with durable response. Taken together, our results raise the possibility that CTLA4 targeting on melanoma cells may contribute to the clinical immunobiology of anti–CTLA4 responses.Significance: These findings show that human melanoma cells express high levels of the immune checkpoint molecule CTLA4, with important possible implications for understanding how anti-CTLA4 immunotherapy mediates its therapeutic effects. Cancer Res; 78(2); 436–50. ©2017 AACR.

http://ift.tt/2DDipvZ

Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, Metastatic Progression, and Survival in Osteosarcoma

Overall survival of patients with osteosarcoma (OS) has improved little in the past three decades, and better models for study are needed. OS is common in large dog breeds and is genetically inducible in mice, making the disease ideal for comparative genomic analyses across species. Understanding the level of conservation of intertumor transcriptional variation across species and how it is associated with progression to metastasis will enable us to more efficiently develop effective strategies to manage OS and to improve therapy. In this study, transcriptional profiles of OS tumors and cell lines derived from humans (n = 49), mice (n = 103), and dogs (n = 34) were generated using RNA sequencing. Conserved intertumor transcriptional variation was present in tumor sets from all three species and comprised gene clusters associated with cell cycle and mitosis and with the presence or absence of immune cells. Further, we developed a novel gene cluster expression summary score (GCESS) to quantify intertumor transcriptional variation and demonstrated that these GCESS values associated with patient outcome. Human OS tumors with GCESS values suggesting decreased immune cell presence were associated with metastasis and poor survival. We validated these results in an independent human OS tumor cohort and in 15 different tumor data sets obtained from The Cancer Genome Atlas. Our results suggest that quantification of immune cell absence and tumor cell proliferation may better inform therapeutic decisions and improve overall survival for OS patients.Significance: This study offers new tools to quantify tumor heterogeneity in osteosarcoma, identifying potentially useful prognostic biomarkers for metastatic progression and survival in patients. Cancer Res; 78(2); 326–37. ©2017 AACR.

http://ift.tt/2D7T2S2

TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive disease lacking targeted therapy. In this study, we developed a CAR T cell–based immunotherapeutic strategy to target TEM8, a marker initially defined on endothelial cells in colon tumors that was discovered recently to be upregulated in TNBC. CAR T cells were developed that upon specific recognition of TEM8 secreted immunostimulatory cytokines and killed tumor endothelial cells as well as TEM8-positive TNBC cells. Notably, the TEM8 CAR T cells targeted breast cancer stem–like cells, offsetting the formation of mammospheres relative to nontransduced T cells. Adoptive transfer of TEM8 CAR T cells induced regression of established, localized patient-derived xenograft tumors, as well as lung metastatic TNBC cell line–derived xenograft tumors, by both killing TEM8+ TNBC tumor cells and targeting the tumor endothelium to block tumor neovascularization. Our findings offer a preclinical proof of concept for immunotherapeutic targeting of TEM8 as a strategy to treat TNBC.Significance: These findings offer a preclinical proof of concept for immunotherapeutic targeting of an endothelial antigen that is overexpressed in triple-negative breast cancer and the associated tumor vasculature. Cancer Res; 78(2); 489–500. ©2017 AACR.

http://ift.tt/2DA5jQ6

Multiregional Sequencing Reveals Genomic Alterations and Clonal Dynamics in Primary Malignant Melanoma of the Esophagus

Primary malignant melanoma of the esophagus (PMME) is a rare and aggressive disease with high tendency of metastasis. To characterize the genetic basis and intratumor heterogeneity of PMME, we performed multiregion exome sequencing and whole genome SNP array genotyping of 12 samples obtained from a patient with PMME. High intratumor heterogeneity was observed in both somatic mutation and copy-number alteration levels. Nine geographically separate samples including two normal samples were clonally related and followed a branched evolution model. Most putative oncogenic drivers such as BRAF and KRAS mutations as well as CDKN2A biallelic inactivation were observed in trunk clones, whereas clinically actionable mutations such as PIK3CA and JAK1 mutations were detected in branch clones. Ancestor tumor clones evolved into three subclonal clades: clade1 fostered metastatic subclones that carried metastatic features of PIK3CA and ARHGAP26 point mutations as well as chr13 arm-level deletion, clade2 owned branch-specific JAK1 mutations and PTEN deletion, and clade3 was found in two vertical distribution samples below the primary tumor area, highlighting the fact that it is possible for PMME to disseminate by the submucosal longitudinal lymphatic route at an early stage of metastasis. These findings facilitate interpretation of the genetic essence of this rare melanoma subtype as well as the pattern of cancer evolution, thus reinforcing the therapeutic challenges associated with PMME.Significance: This study highlights the use of multiregion exome sequencing and whole genome SNP array genotyping to comprehensively characterize the genetic landscape of a rare type of esophogeal melanoma. Cancer Res; 78(2); 338–47. ©2017 AACR.

http://ift.tt/2DDiuzN

New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging

Targeted therapeutics that are initially effective in cancer patients nearly invariably engender resistance at some stage, an inherent challenge in the use of any molecular-targeted drug in cancer settings. In this study, we evaluated resistance mechanisms arising in metastatic melanoma to MAPK pathway kinase inhibitors as a strategy to identify candidate strategies to limit risks of resistance. To investigate longitudinal responses, we developed an intravital serial imaging approach that can directly visualize drug response in an inducible RAF-driven, autochthonous murine model of melanoma incorporating a fluorescent reporter allele (tdTomatoLSL). Using this system, we visualized formation and progression of tumors in situ, starting from the single-cell level longitudinally over time. Reliable reporting of the status of primary murine tumors treated with the selective MEK1/2 inhibitor (MEKi) trametinib illustrated a time-course of initial drug response and persistence, followed by the development of drug resistance. We found that tumor cells adjacent to bundled collagen had a preferential persistence in response to MEKi. Unbiased transcriptional and kinome reprogramming analyses from selected treatment time points suggested increased c-Kit and PI3K/AKT pathway activation in resistant tumors, along with enhanced expression of epithelial genes and epithelial-mesenchymal transition downregulation signatures with development of MEKi resistance. Similar trends were observed following simultaneous treatment with BRAF and MEK inhibitors aligned to standard-of-care combination therapy, suggesting these reprogramming events were not specific to MEKi alone. Overall, our results illuminate the integration of tumor–stroma dynamics with tissue plasticity in melanoma progression and provide new insights into the basis for drug response, persistence, and resistance.Significance: A longitudinal study tracks the course of MEKi treatment in an autochthonous imageable murine model of melanoma from initial response to therapeutic resistance, offering new insights into the basis for drug response, persistence, and resistance. Cancer Res; 78(2); 542–57. ©2017 AACR.

http://ift.tt/2DAn95p

Utility of Single-Cell Genomics in Diagnostic Evaluation of Prostate Cancer

A distinction between indolent and aggressive disease is a major challenge in diagnostics of prostate cancer. As genetic heterogeneity and complexity may influence clinical outcome, we have initiated studies on single tumor cell genomics. In this study, we demonstrate that sparse DNA sequencing of single-cell nuclei from prostate core biopsies is a rich source of quantitative parameters for evaluating neoplastic growth and aggressiveness. These include the presence of clonal populations, the phylogenetic structure of those populations, the degree of the complexity of copy-number changes in those populations, and measures of the proportion of cells with clonal copy-number signatures. The parameters all showed good correlation to the measure of prostatic malignancy, the Gleason score, derived from individual prostate biopsy tissue cores. Remarkably, a more accurate histopathologic measure of malignancy, the surgical Gleason score, agrees better with these genomic parameters of diagnostic biopsy than it does with the diagnostic Gleason score and related measures of diagnostic histopathology. This is highly relevant because primary treatment decisions are dependent upon the biopsy and not the surgical specimen. Thus, single-cell analysis has the potential to augment traditional core histopathology, improving both the objectivity and accuracy of risk assessment and inform treatment decisions.Significance: Genomic analysis of multiple individual cells harvested from prostate biopsies provides an indepth view of cell populations comprising a prostate neoplasm, yielding novel genomic measures with the potential to improve the accuracy of diagnosis and prognosis in prostate cancer. Cancer Res; 78(2); 348–58. ©2017 AACR.

http://ift.tt/2D6SLyM

Highlights from Recent Cancer Literature



http://ift.tt/2DCQEnn

The E3 Ligase RING1 Targets p53 for Degradation and Promotes Cancer Cell Proliferation and Survival

As a component of the transcriptional repression complex 1 (PRC1), the ring finger protein RING1 participates in the epigenetic regulation in cancer. However, the contributions of RING1 to cancer etiology or development are unknown. In this study, we report that RING1 is a critical negative regulator of p53 homeostasis in human hepatocellular and colorectal carcinomas. RING1 acts as an E3 ubiquitin (Ub) ligase to directly interact with and ubiquitinate p53, resulting in its proteasome-dependent degradation. The RING domain of RING1 was required for its E3 Ub ligase activity. RING1 depletion inhibited the proliferation and survival of the p53 wild-type cancer cells by inducing cell-cycle arrest, apoptosis, and senescence, with only modest effects on p53-deficient cells. Its growth inhibitory effect was partially rescued by p53 silencing, suggesting an important role for the RING1–p53 complex in human cancer. In clinical specimens of hepatocellular carcinoma, RING1 upregulation was evident in association with poor clinical outcomes. Collectively, our results elucidate a novel PRC1-independent function of RING1 and provide a mechanistic rationale for its candidacy as a new prognostic marker and/or therapeutic target in human cancer.Significance: These results elucidate a novel PRC1-independent function of RING1 and provide a mechanistic rationale for its candidacy as a new prognostic marker and/or therapeutic target in human cancer. Cancer Res; 78(2); 359–71. ©2017 AACR.

http://ift.tt/2DCQE6R

Distinct TP63 Isoform-Driven Transcriptional Signatures Predict Tumor Progression and Clinical Outcomes

TP63 is required to maintain stem cell pluripotency and suppresses the metastatic potential of cancer cells through multiple mechanisms. These functions are differentially regulated by individual isoforms, necessitating a deeper understanding of how the distinct transcriptional programs controlled by these isoforms affect cancer progression and outcomes. In this study, we conducted a pan-cancer analysis of The Cancer Genome Atlas to identify transcriptional networks regulated by TAp63 and ΔNp63 using transcriptomes derived from epidermal cells of TAp63−/− and ΔNp63−/− mice. Analysis of 17 cancer developmental and 27 cancer progression signatures revealed a consistent tumor suppressive pattern for TAp63. In contrast, we identified pleiotropic roles for ΔNp63 in tumor development and found that its regulation of Lef1 was crucial for its oncogenic role. ΔNp63 performed a distinctive role as suppressor of tumor progression by cooperating with TAp63 to modulate key biological pathways, principally cell-cycle regulation, extracellular matrix remodeling, epithelial-to-mesenchymal transition, and the enrichment of pluripotent stem cells. Importantly, these TAp63 and ΔNp63 signatures prognosticated progression and survival, even within specific stages, in bladder and renal carcinomas as well as low-grade gliomas. These data describe a novel approach for understanding transcriptional activities of TP63 isoforms across a large number of cancer types, potentially enabling identification of patient subsets most likely to benefit from therapies predicated on manipulating specific TP63 isoforms.Significance: Transcriptomic analyses of patient samples and murine knockout models highlight the prognostic role of several critical mechanisms of tumor suppression that are regulated by TP63. Cancer Res; 78(2); 451–62. ©2017 AACR.

http://ift.tt/2DahPVx

SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation

The mitochondrial serine hydroxymethyltransferase SHMT2, which catalyzes the rate-limiting step in serine catabolism, drives cancer cell proliferation, but how this role is regulated is undefined. Here, we report that the sirtuin SIRT5 desuccinylates SHMT2 to increase its activity and drive serine catabolism in tumor cells. SIRT5 interaction directly mediated desuccinylation of lysine 280 on SHMT2, which was crucial for activating its enzymatic activity. Conversely, hypersuccinylation of SHMT2 at lysine 280 was sufficient to inhibit its enzymatic activity and downregulate tumor cell growth in vitro and in vivo. Notably, SIRT5 inactivation led to SHMT2 enzymatic downregulation and to abrogated cell growth under metabolic stress. Our results reveal that SHMT2 desuccinylation is a pivotal signal in cancer cells to adapt serine metabolic processes for rapid growth, and they highlight SIRT5 as a candidate target for suppressing serine catabolism as a strategy to block tumor growth.Significance: These findings reveal a novel mechanism for controlling cancer cell proliferation by blocking serine catabolism, as a general strategy to impede tumor growth. Cancer Res; 78(2); 372–86. ©2017 AACR.

http://ift.tt/2D7SZWm

Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and disseminating cancer resistant to therapy, including checkpoint immunotherapies, and early tumor resection and (neo)adjuvant chemotherapy fails to improve a poor prognosis. In a transgenic mouse model of resectable PDAC, we investigated the coordinated activation of T and natural killier (NK) cells in addition to gemcitabine chemotherapy to prevent tumor recurrence. Only neoadjuvant, but not adjuvant treatment with a PD-1 antagonist effectively supported chemotherapy and suppressed local tumor recurrence and improved survival involving both NK and T cells. Local T-cell activation was confirmed by increased tumor infiltration with CD103+CD8+ T cells and neoantigen-specific CD8 T lymphocytes against the marker neoepitope LAMA4-G1254V. To achieve effective prevention of distant metastases in a complementary approach, we blocked the NK-cell checkpoint CD96, an inhibitory NK-cell receptor that binds CD155, which was abundantly expressed in primary PDAC and metastases of human patients. In gemcitabine-treated mice, neoadjuvant PD-1 blockade followed by adjuvant inhibition of CD96 significantly prevented relapse of PDAC, allowing for long-term survival. In summary, our results show in an aggressively growing transgenic mouse model of PDAC that the coordinated activation of both innate and adaptive immunity can effectively reduce the risk of tumor recurrence after surgery, facilitating long-term remission of this lethal disease.Significance: Coordinated neoadjuvant and adjuvant immunotherapies reduce the risk of disease relapse after resection of murine PDAC, suggesting this concept for future clinical trials. Cancer Res; 78(2); 475–88. ©2017 AACR.

http://ift.tt/2DahLoL

PTBP3-Mediated Regulation of ZEB1 mRNA Stability Promotes Epithelial-Mesenchymal Transition in Breast Cancer

The RNA polypyrimidine tract-binding protein PTBP3 is a little studied paralog of PTBP1, which has oncogenic properties. In this study, we demonstrate that PTBP3 induces epithelial–mesenchymal transition (EMT) in breast tumor cells and promotes their invasive growth and metastasis. Elevated expression of PTBP3 associated significantly with lymph node metastasis, advanced histology grade, TNM stage, and poor 5-year overall survival of patients. In human mammary epithelial cells, PTBP3 overexpression was sufficient to induce EMT and to enhance cell migration, invasion, and cancer stem-like cell properties. PTBP3 regulated expression of the EMT regulatory transcription factor ZEB1 by binding the 3′UTR of its mRNA, thereby preventing its degradation. Conversely, ZEB1 ablation blocked the ability of PTBP3 to induce EMT. Overall, our findings define PTBP3 as a regulator of EMT that acts by governing expression of ZEB1, and they establish an oncogenic function of PTBP3, suggesting its candidacy as a theranostic target.Significance: These findings define PTBP3 as a regulator of EMT that acts by governing expression of ZEB1, and they establish an oncogenic function of PTBP3, suggesting its candidacy as a theranostic target. Cancer Res; 78(2); 387–98. ©2017 AACR.

http://ift.tt/2DCtJZt

miR-139-5p Modulates Radiotherapy Resistance in Breast Cancer by Repressing Multiple Gene Networks of DNA Repair and ROS Defense

Radiotherapy is essential to the treatment of most solid tumors and acquired or innate resistance to this therapeutic modality is a major clinical problem. Here we show that miR-139-5p is a potent modulator of radiotherapy response in breast cancer via its regulation of genes involved in multiple DNA repair and reactive oxygen species defense pathways. Treatment of breast cancer cells with a miR-139-5p mimic strongly synergized with radiation both in vitro and in vivo, resulting in significantly increased oxidative stress, accumulation of unrepaired DNA damage, and induction of apoptosis. Several miR-139-5p target genes were also strongly predictive of outcome in radiotherapy-treated patients across multiple independent breast cancer cohorts. These prognostically relevant miR-139-5p target genes were used as companion biomarkers to identify radioresistant breast cancer xenografts highly amenable to sensitization by cotreatment with a miR-139-5p mimetic.Significance: The microRNA described in this study offers a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applicable druggable target for tumor radiosensitization. Cancer Res; 78(2); 501–15. ©2017 AACR.

http://ift.tt/2DaTRJy




Clinical association of anti-glutathione S-transferase T1 antibodies and de novo immune hepatitis after hematopoietic cell transplantation



http://ift.tt/2reGk2o

Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms

Purpose: To explore the potential of ex vivo expanded healthy donor–derived allogeneic CD4 and CD8 double-negative cells (DNT) as a novel cellular immunotherapy for leukemia patients.

Experimental Design: Clinical-grade DNTs from peripheral blood of healthy donors were expanded and their antileukemic activity and safety were examined using flow cytometry–based in vitro killing assays and xenograft models against AML patient blasts and healthy donor–derived hematopoietic cells. Mechanism of action was investigated using antibody-mediated blocking assays and recombinant protein treatment assays.

Results: Expanded DNTs from healthy donors target a majority (36/46) of primary AML cells, including 9 chemotherapy-resistant patient samples in vitro, and significantly reduce the leukemia load in patient-derived xenograft models in a DNT donor–unrestricted manner. Importantly, allogeneic DNTs do not attack normal hematopoietic cells or affect hematopoietic stem/progenitor cell engraftment and differentiation, or cause xenogeneic GVHD in recipients. Mechanistically, DNTs express high levels of NKG2D and DNAM-1 that bind to cognate ligands preferentially expressed on AML cells. Upon recognition of AML cells, DNTs rapidly release IFN, which further increases NKG2D and DNAM-1 ligands' expression on AML cells. IFN pretreatment enhances the susceptibility of AML cells to DNT-mediated cytotoxicity, including primary AML samples that are otherwise resistant to DNTs, and the effect of IFN treatment is abrogated by NKG2D and DNAM-1–blocking antibodies.

Conclusions: This study supports healthy donor–derived allogeneic DNTs as a therapy to treat patients with chemotherapy-resistant AML and also reveals interrelated roles of NKG2D, DNAM-1, and IFN in selective targeting of AML by DNTs. Clin Cancer Res; 24(2); 370–82. ©2017 AACR.



http://ift.tt/2DeGpbV

Global Metabolic Profiling Identifies a Pivotal Role of Proline and Hydroxyproline Metabolism in Supporting Hypoxic Response in Hepatocellular Carcinoma

Purpose: Metabolic reprogramming is frequently identified in hepatocellular carcinoma (HCC), which is the most common type of liver malignancy. The reprogrammed cellular metabolisms promote tumor cell survival, proliferation, angiogenesis, and metastasis. However, the mechanisms of this process remain unclear in HCC.

Experimental Design: The global nontargeted metabolic study in 69 paired hepatic carcinomas and adjacent tissue specimens was performed using capillary electrophoresis-time of flight mass spectrometry–based approach. Key findings were validated by targeted metabolomic approach. Biological studies were also performed to investigate the role of proline biosynthesis in HCC pathogenesis.

Results: Proline metabolism was markedly changed in HCC tumor tissue, characterized with accelerated consumption of proline and accumulation of hydroxyproline, which significantly correlated with α-fetoprotein levels and poor prognosis in HCC. In addition, we found that hydroxyproline promoted hypoxia- and HIF-dependent phenotype in HCC. Moreover, we demonstrated that hypoxia activated proline biosynthesis via upregulation of ALDH18A1, subsequently leading to accumulation of hydroxyproline via attenuated PRODH2 activity. More importantly, we showed that glutamine, proline, and hydroxyproline metabolic axis supported HCC cell survival through modulating HIF1α stability in response to hypoxia. Finally, inhibition of proline biosynthesis significantly enhanced cytotoxicity of sorafenib in vitro and in vivo.

Conclusions: Our results demonstrate that hypoxic microenvironment activates proline metabolism, resulting in accumulation of hydroxyproline that promotes HCC tumor progression and sorafenib resistance through modulating HIF1α. These findings provide the proof of concept for targeting proline metabolism as a potential therapeutic strategy for HCC. Clin Cancer Res; 24(2); 474–85. ©2017 AACR.



http://ift.tt/2Dh0C0U

Targeting CDH17 in Cancer: When Blocking the Ligand Beats Blocking the Receptor?

Cadherin-17 (CDH17) has been implicated as protumorigenic for many years, but mechanisms have been unclear. A Spanish team has generated antibodies to an RGD motif in CDH17 that inhibits integrin α2β1 binding to CDH17 and thereby inhibits integrin activation, tumorigenesis, and metastasis. These reagents may have therapeutic potential. Clin Cancer Res; 24(2); 253–5. ©2017 AACR.

See related article by Bartolomé et al., p. 433



http://ift.tt/2B3Lu0P

Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion

Purpose: Vimentin is an epithelial-to-mesenchymal transition (EMT) biomarker and intermediate filament protein that functions during cell migration to maintain structure and motility. Despite the abundance of clinical data linking vimentin to poor patient outcome, it is unclear if vimentin is required for metastasis or is a correlative biomarker. We developed a novel genetically engineered mouse model (GEMM) to probe vimentin in lung adenocarcinoma metastasis.

Experimental Design: We used the LSL-KrasG12D/Lkb1fl/fl/Vim–/– model (KLV–/–), which incorporates a whole-body knockout of vimentin and is derived from the Cre-dependent LSL-KrasG12D/Lkb1fl/fl model (KLV+/+). We compared the metastatic phenotypes of the GEMMs and analyzed primary tumors from the KLV models and lung adenocarcinoma patients to assess vimentin expression and function.

Results: Characterization of KLV+/+ and KLV–/– mice shows that although vimentin is not required for primary lung tumor growth, vimentin is required for metastasis, and vimentin loss generates lower grade primary tumors. Interestingly, in the KLV+/+ mice, vimentin was not expressed in tumor cells but in cancer-associated fibroblasts (CAFs) surrounding collective invasion packs (CIPs) of epithelial tumor cells, with significantly less CIPs in KLV–/– mice. CIPs correlate with tumor grade and are vimentin-negative and E-cadherin–positive, indicating a lack of cancer cell EMT. A similar heterotypic staining pattern was observed in human lung adenocarcinoma samples. In vitro studies show that vimentin is required for CAF motility to lead tumor cell invasion, supporting a vimentin-dependent model of collective invasion.

Conclusions: These data show that vimentin is required for lung adenocarcinoma metastasis by maintaining heterotypic tumor cell–CAF interactions during collective invasion. Clin Cancer Res; 24(2); 420–32. ©2017 AACR.



http://ift.tt/2Dh0H4I

Drug Repositioning Meets Precision in Glioblastoma

Glioblastoma has a gigantic unmet medical need. Molecular knowledge has evolved substantially, including data on clonal selection with progression. Past trials for all-comers may have produced false negative results. Molecular precision at progression needs workup of new tissue, and revisiting drugs with a focus on brain tumor penetration may yield surprises. Clin Cancer Res; 24(2); 256–8. ©2017 AACR.

See related article by Byron et al., p. 295



http://ift.tt/2Dh0WNa

Highlights of This Issue



http://ift.tt/2Dhh8Ot

Toward Precision Radiotherapy for Use with Immune Checkpoint Blockers

The first evidence that radiotherapy enhances the efficacy of immune checkpoint blockers (ICB) was obtained a dozen years ago in a mouse model of metastatic carcinoma refractory to anti–CTLA-4 treatment. At the time, ICBs had just entered clinical testing, an endeavor that culminated in 2011 with the approval of the first anti–CTLA-4 antibody for use in metastatic melanoma patients (ipilimumab). Thereafter, some patients progressing on ipilimumab showed systemic responses only upon receiving radiation to one lesion, confirming clinically the proimmunogenic effects of radiation. Preclinical data demonstrate that multiple immunomodulators synergize with radiotherapy to cause the regression of irradiated tumors and, less often, nonirradiated metastases. However, the impact of dose and fractionation on the immunostimulatory potential of radiotherapy has not been thoroughly investigated. This issue is extremely relevant given the growing number of clinical trials testing the ability of radiotherapy to increase the efficacy of ICBs. Recent data demonstrate that the recruitment of dendritic cells to neoplastic lesions (and hence the priming of tumor-specific CD8+ T cells) is highly dependent on radiotherapy dose and fractionation through a mechanism that involves the accumulation of double-stranded DNA in the cytoplasm of cancer cells and consequent type I IFN release. The molecular links between the cellular response to radiotherapy and type I IFN secretion are just being uncovered. Here, we discuss the rationale for an optimized use of radiotherapy as well as candidate biomarkers that may predict clinical responses to radiotherapy combined with ICBs. Clin Cancer Res; 24(2); 259–65. ©2017 AACR.



http://ift.tt/2B4Vs1T

Dual mTOR Kinase Inhibitor MLN0128 Sensitizes HR+/HER2+ Breast Cancer Patient-Derived Xenografts to Trastuzumab or Fulvestrant

Purpose: Therapeutic strategies against hormonal receptor–positive (HR+)/HER2+ breast cancers with poor response to trastuzumab need to be optimized.

Experimental Design: Two HR+/HER2+ patient-derived xenograft (PDX) models named as COH-SC1 and COH-SC31 were established to explore targeted therapies for HER2+ breast cancers. RNA sequencing and RPPA (reverse phase protein array) analyses were conducted to decipher molecular features of the two PDXs and define the therapeutic strategy of interest, validated by in vivo drug efficacy examination and in vitro cell proliferation analysis.

Results: Estrogen acted as a growth driver of trastuzumab-resistant COH-SC31 tumors but an accelerator in the trastuzumab-sensitive COH-SC1 model. In vivo trastuzumab efficacy examination further confirmed the consistent responses between PDXs and the corresponding tumors. Integrative omics analysis revealed that mammalian target of rapamycin (mTOR) and ERα signaling predominantly regulate tumor growth of the two HR+/HER2+ PDXs. Combination of the dual mTOR complex inhibitor MLN0128 and anti-HER2 trastuzumab strongly suppressed tumor growth of COH-SC1 PDX accompanied by increasing ER-positive cell population in vivo. Instead, MLN0128 in combination with antiestrogen fulvestrant significantly halted the growth of HR+/HER2+ cancer cells in vitro and trastuzumab-resistant COH-SC31 as well as trastuzumab-sensitive COH-SC1 tumors in vivo.

Conclusions: Compared with the standard trastuzumab treatment, this study demonstrates alternative therapeutic strategies against HR+/HER2+ tumors through establishment of two PDXs coupled with integrative omics analyses and in vivo drug efficacy examination. This work presents a prototype of future "co-clinical" trials to tailor personalized medicine in clinical practice. Clin Cancer Res; 24(2); 395–406. ©2017 AACR.



http://ift.tt/2Dh0Jtm

Tumor-Treating Fields: A Fourth Modality in Cancer Treatment

Despite major advances in therapy, cancer continues to be a leading cause of mortality. In addition, toxicities of traditional therapies pose a significant challenge to tolerability and adherence. TTFields, a noninvasive anticancer treatment modality, utilizes alternating electric fields at specific frequencies and intensities to selectively disrupt mitosis in cancerous cells. TTFields target proteins crucial to the cell cycle, leading to mitotic arrest and apoptosis. TTFields also facilitate an antitumor immune response. Clinical trials of TTFields have proven safe and efficacious in patients with glioblastoma multiforme (GBM), and are FDA approved for use in newly diagnosed and recurrent GBM. Trials in other localized solid tumors are ongoing. Clin Cancer Res; 24(2); 266–75. ©2017 AACR.



http://ift.tt/2Dh0UF2

Inhibition of REDD1 Sensitizes Bladder Urothelial Carcinoma to Paclitaxel by Inhibiting Autophagy

Purpose: Regulated in development and DNA damage response-1 (REDD1) is a stress-related protein and is involved in the progression of cancer. The role and regulatory mechanism of REDD1 in bladder urothelial carcinoma (BUC), however, is yet unidentified.

Experimental Design: The expression of REDD1 in BUC was detected by Western blot analysis and immunohistochemistry (IHC). The correlation between REDD1 expression and clinical features in patients with BUC were assessed. The effects of REDD1 on cellular proliferation, apoptosis, autophagy, and paclitaxel sensitivity were determined both in vitro and in vivo. Then the targeted-regulating mechanism of REDD1 by miRNAs was explored.

Results: Here the significant increase of REDD1 expression is detected in BUC tissue, and REDD1 is first reported as an independent prognostic factor in patients with BUC. Silencing REDD1 expression in T24 and EJ cells decreased cell proliferation, increased apoptosis, and decreased autophagy, whereas the ectopic expression of REDD1 in RT4 and BIU87 cells had the opposite effect. In addition, the REDD1-mediated proliferation, apoptosis, and autophagy are found to be negatively regulated by miR-22 in vitro, which intensify the paclitaxel sensitivity via inhibition of the well-acknowledged REDD1–EEF2K–autophagy axis. AKT/mTOR signaling initially activated or inhibited in response to silencing or enhancing REDD1 expression and then recovered rapidly. Finally, the inhibited REDD1 expression by either RNAi or miR-22 sensitizes BUC tumor cells to paclitaxel in a subcutaneous transplant carcinoma model in vivo.

Conclusions: REDD1 is confirmed as an oncogene in BUC, and antagonizing REDD1 could be a potential therapeutic strategy to sensitize BUC cells to paclitaxel. Clin Cancer Res; 24(2); 445–59. ©2017 AACR.



http://ift.tt/2DeVH0f

Clinical and Immunologic Biomarkers for Histologic Regression of High-Grade Cervical Dysplasia and Clearance of HPV16 and HPV18 after Immunotherapy

Purpose: As previously reported, treatment of high-grade cervical dysplasia with VGX-3100 resulted in complete histopathologic regression (CR) concomitant with elimination of HPV16/18 infection in 40.0% of VGX-3100–treated patients compared with only 14.3% in placebo recipients in a randomized phase IIb study. Here, we identify clinical and immunologic characteristics that either predicted or correlated with therapeutic benefit from VGX-3100 to identify parameters that might guide clinical decision-making for this disease.

Experimental Design: We analyzed samples taken from cervical swabs, whole blood, and tissue biopsies/resections to determine correlates and predictors of treatment success.

Results: At study entry, the presence of preexisting immunosuppressive factors such as FoxP3 and PD-L1 in cervical lesions showed no association with treatment outcome. The combination of HPV typing and cervical cytology following dosing was predictive for both histologic regression and elimination of detectable virus at the efficacy assessment 22 weeks later (negative predictive value 94%). Patients treated with VGX-3100 who had lesion regression had a statistically significant >2-fold increase in CD137+perforin+CD8+ T cells specific for the HPV genotype causing disease. Increases in cervical mucosal CD137+ and CD103+ infiltrates were observed only in treated patients. Perforin+ cell infiltrates were significantly increased >2-fold in cervical tissue only in treated patients who had histologic CR.

Conclusions: Quantitative measures associated with an effector immune response to VGX-3100 antigens were associated with lesion regression. Consequently, these analyses indicate that certain immunologic responses associate with successful resolution of HPV-induced premalignancy, with particular emphasis on the upregulation of perforin in the immunotherapy-induced immune response. Clin Cancer Res; 24(2); 276–94. ©2017 AACR.



http://ift.tt/2B4sFdX

Correction: Prevention of Colitis and Colitis-Associated Colorectal Cancer by a Novel Polypharmacological Histone Deacetylase Inhibitor



http://ift.tt/2DdNEAI

Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma

Purpose: Glioblastoma is an aggressive and molecularly heterogeneous cancer with few effective treatment options. We hypothesized that next-generation sequencing can be used to guide treatment recommendations within a clinically acceptable time frame following surgery for patients with recurrent glioblastoma.

Experimental Design: We conducted a prospective genomics-informed feasibility trial in adults with recurrent and progressive glioblastoma. Following surgical resection, genome-wide tumor/normal exome sequencing and tumor RNA sequencing were performed to identify molecular targets for potential matched therapy. A multidisciplinary molecular tumor board issued treatment recommendations based on the genomic results, blood–brain barrier penetration of the indicated therapies, drug–drug interactions, and drug safety profiles. Feasibility of generating genomics-informed treatment recommendations within 35 days of surgery was assessed.

Results: Of the 20 patients enrolled in the study, 16 patients had sufficient tumor tissue for analysis. Exome sequencing was completed for all patients, and RNA sequencing was completed for 14 patients. Treatment recommendations were provided within the study's feasibility time frame for 15 of 16 (94%) patients. Seven patients received treatment based on the tumor board recommendations. Two patients reached 12-month progression-free survival, both adhering to treatments based on the molecular profiling results. One patient remained on treatment and progression free 21 months after surgery, 3 times longer than the patient's previous time to progression. Analysis of matched nonenhancing tissue from 12 patients revealed overlapping as well as novel putatively actionable genomic alterations.

Conclusions: Use of genome-wide molecular profiling is feasible and can be informative for guiding real-time, central nervous system–penetrant, genomics-informed treatment recommendations for patients with recurrent glioblastoma. Clin Cancer Res; 24(2); 295–305. ©2017 AACR.

See related commentary by Wick and Kessler, p. 256



http://ift.tt/2Dh0T3W

Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression

Purpose: Small-cell lung cancer (SCLC) is an often-fatal neuroendocrine carcinoma usually presenting as extensive disease, carrying a 3% 5-year survival. Despite notable advances in SCLC genomics, new therapies remain elusive, largely due to a lack of druggable targets.

Experimental Design: We used a high-throughput drug screen to identify a venetoclax-sensitive SCLC subpopulation and validated the findings with multiple patient-derived xenografts of SCLC.

Results: Our drug screen consisting of a very large collection of cell lines demonstrated that venetoclax, an FDA-approved BCL-2 inhibitor, was found to be active in a substantial fraction of SCLC cell lines. Venetoclax induced BIM-dependent apoptosis in vitro and blocked tumor growth and induced tumor regressions in mice bearing high BCL-2–expressing SCLC tumors in vivo. BCL-2 expression was a predictive biomarker for sensitivity in SCLC cell lines and was highly expressed in a subset of SCLC cell lines and tumors, suggesting that a substantial fraction of patients with SCLC could benefit from venetoclax. Mechanistically, we uncover a novel role for gene methylation that helped discriminate high BCL-2–expressing SCLCs.

Conclusions: Altogether, our findings identify venetoclax as a promising new therapy for high BCL-2–expressing SCLCs. Clin Cancer Res; 24(2); 360–9. ©2017 AACR.



http://ift.tt/2B4qHKm

Muscadine Grape Skin Extract (MPX) in Men with Biochemically Recurrent Prostate Cancer: A Randomized, Multicenter, Placebo-Controlled Clinical Trial

Purpose: MuscadinePlus (MPX), a commercial preparation of pulverized muscadine grape skin, was evaluated as a therapeutic option for men with biochemically recurrent (BCR) prostate cancer wishing to defer androgen deprivation therapy.

Experimental Design: This was a 12-month, multicenter, placebo-controlled, two-dose, double-blinded trial of MPX in 125 men with BCR prostate cancer, powered to detect a PSA doubling time (PSADT) difference of 6 months (low dose) and 12 months (high dose) relative to placebo. Participants were stratified (baseline PSADT, Gleason score) and randomly assigned 1:2:2 to receive placebo, 500 mg MPX (low), or 4,000 mg MPX (high) daily. Correlates included superoxide dismutase-2 (SOD2) genotype, lipid peroxidation, and polyphenol pharmacokinetics.

Results: The evaluable population included 112 patients, all treated for at least 6 months and 62% treated for 12 months. No significant difference was found in PSADT change between control and treatment arms (P = 0.81): control 0.9 months (n = 20; range, 6.7–83.1), low dose 1.5 months (n = 52; range, 10.3–87.2), high dose 0.9 months (n = 40; range, 27.3–88.1). One high-dose patient experienced objective response. No drug-related CTCAE grade 3–4 adverse events were seen. In a preplanned exploratory analysis, PSADT pre-to-post increase was significant in the 27 (26%) genotyped patients with SOD2 Alanine/Alanine genotype (rs4880 T>C polymorphism) on MPX (pooled treatment arms; 6.4 months, P = 0.02), but not in control (1.8 months, P = 0.25).

Conclusions: Compared with placebo, MPX did not significantly prolong PSADT in BCR patients over two different doses. Exploratory analysis revealed a patient population with potential benefit that would require further study. Clin Cancer Res; 24(2); 306–15. ©2017 AACR.



http://ift.tt/2B2X9gt

Inhibition of ID1-BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy

Purpose: Normal stem cells tightly control self-renewal and differentiation during development, but their neoplastic counterparts, cancer stem cells (CSCs), sustain tumorigenicity both through aberrant activation of stemness and evasion of differentiation. Although regulation of CSC stemness has been extensively studied, the molecular mechanisms suppressing differentiation remain unclear.

Experimental Design: We performed in silico screening and in vitro validation studies through Western blotting, qRT-PCR for treatment of WNT and SHH signaling inhibitors, and BMP signaling inducer with control and ID1-overexpressing cells. We also performed in vivo drug treatment assays with Balb/c nude mice.

Results: Inhibitor of differentiation 1 (ID1) abrogated differentiation signals from bone morphogenetic protein receptor (BMPR) signaling in glioblastoma stem cells (GSCs) to promote self-renewal. ID1 inhibited BMPR2 expression through miRNAs, miR-17 and miR-20a, which are transcriptional targets of MYC. ID1 increases MYC expression by activating WNT and SHH signaling. Combined pharmacologic blockade of WNT and SHH signaling with BMP treatment significantly suppressed GSC self-renewal and extended survival of tumor-bearing mice.

Conclusions: Collectively, our results suggested that ID1 simultaneously regulates stemness through WNT and SHH signaling and differentiation through BMPR-mediated differentiation signaling in GSCs, informing a novel therapeutic strategy of combinatorial targeting of stemness and differentiation. Clin Cancer Res; 24(2); 383–94. ©2017 AACR.



http://ift.tt/2B70NWE

A Randomized, Double-Blind, Placebo-Controlled Phase II Study of the Efficacy and Safety of Monotherapy Ontuxizumab (MORAb-004) Plus Best Supportive Care in Patients with Chemorefractory Metastatic Colorectal Cancer

Purpose: The purpose of this study was to evaluate the safety and efficacy of ontuxizumab (MORAb-004), a monoclonal antibody that interferes with endosialin (tumor endothelial marker-1) function, in patients with chemorefractory metastatic colorectal cancer and to identify a responsive patient population based on biomarkers.

Experimental Design: This was a randomized, double-blind, placebo-controlled, phase II study. Patients were randomly assigned in a 2:1 ratio to receive weekly intravenous ontuxizumab (8 mg/kg) or placebo plus best supportive care until progression or unacceptable toxicity. Tissue and blood biomarkers were evaluated for their ability to identify a patient population that was responsive to ontuxizumab.

Results: A total of 126 patients were enrolled. No significant difference between the ontuxizumab and placebo groups was evident for the primary endpoint of progression-free survival (PFS), with a median PFS of 8.1 weeks in each group (HR, 1.13; 95% confidence interval, 0.76–1.67; P = 0.53). There were no significant differences between groups for overall survival (OS) or overall response rate (ORR). The most common treatment-emergent adverse events (TEAEs) in the ontuxizumab group (vs. the placebo group, respectively) were fatigue (53.7% vs. 47.5%), nausea (39.0% vs. 35.0%), decreased appetite (34.1% vs. 27.5%), and constipation (28.0% vs. 32.5%). The most common grade 3/4 TEAE in the ontuxizumab group versus placebo was back pain (11.0% vs. 0%). No single biomarker clearly identified patients responsive to ontuxizumab.

Conclusions: No benefit with ontuxizumab monotherapy compared with placebo for clinical response parameters of PFS, OS, or ORR was demonstrated. Ontuxizumab was well tolerated. Clin Cancer Res; 24(2); 316–25. ©2017 AACR.



http://ift.tt/2DdNFog

Low PD-1 Expression in Cytotoxic CD8+ Tumor-Infiltrating Lymphocytes Confers an Immune-Privileged Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value

Purpose: The success of immune checkpoint inhibitors strengthens the notion that tumor growth and regression are immune regulated. To determine whether distinct tissue immune microenvironments differentially affect clinical outcome in non–small cell lung cancer (NSCLC), an extended analysis of PD-L1 and tumor-infiltrating lymphocytes (TIL) was performed.

Experimental Design: Samples from resected adenocarcinoma (ADC 42), squamous cell carcinoma (SCC 58), and 26 advanced diseases (13 ADC and 13 SCC) treated with nivolumab were analyzed. PD-L1 expression and the incidence of CD3, CD8, CD4, PD-1, CD57, FOXP3, CD25, and Granzyme B TILs were immunohistochemically assessed.

Results: PD-L1 levels inversely correlated with N involvement, although they did not show a statistically significant prognostic value in resected patients. The incidence and phenotype of TILs differed in SCC versus ADC, in which EGFR and KRAS mutations conditioned a different frequency and tissue localization of lymphocytes. NSCLC resected patients with high CD8pos lymphocytes lacking PD-1 inhibitory receptor had a longer overall survival (OS: HR = 2.268; 95% CI, 1.056–4.871, P = 0.03). PD-1-to-CD8 ratio resulted in a prognostic factor both on univariate (HR = 1.952; 95% CI, 1.34–3.12, P = 0.001) and multivariate (HR = 1.943; 95% CI, 1.38–2.86, P = 0.009) analysis. Moreover, low PD-1 incidence among CD8pos cells was a distinctive feature of nivolumab-treated patients, showing clinical benefit with a prolonged progression-free survival (PFS: HR = 4.51; 95% CI, 1.45–13.94, P = 0.004).

Conclusions: In the presence of intrinsic variability in PD-L1 expression, the reservoir of PD-1–negative effector T lymphocytes provides an immune-privileged microenvironment with a positive impact on survival of patients with resected disease and response to immunotherapy in advanced NSCLC. Clin Cancer Res; 24(2); 407–19. ©2017 AACR.



http://ift.tt/2B4qDdA

Location of Mutation in BRCA2 Gene and Survival in Patients with Ovarian Cancer

Purpose: BRCA2 plays a central role in homologous recombination by loading RAD51 on DNA breaks. The objective of this study is to determine whether the location of mutations in the RAD51-binding domain (RAD51-BD; exon 11) of BRCA2 gene affects the clinical outcome of ovarian cancer patients.

Experimental Design: A study cohort of 353 women with ovarian cancer who underwent genetic germline testing for BRCA1 and BRCA2 genes was identified. Progression-free survival (PFS), platinum-free interval (PFI), and overall survival (OS) were analyzed. The Cancer Genome Atlas (TCGA) cohort of ovarian cancer (n = 316) was used as a validation cohort.

Results: In the study cohort, 78 patients were carriers of germline mutations of BRCA2. After adjustment for FIGO stage and macroscopic residual disease, BRCA2 carriers with truncating mutations in the RAD51-BD have significantly prolonged 5-year PFS [58%; adjusted HR, 0.36; 95% confidence interval (CI), 0.20–0.64; P = 0.001] and prolonged PFI (29.7 vs. 15.5 months, P = 0.011), compared with noncarriers. BRCA2 carriers with mutations located in other domains of the gene do not have prolonged 5-year PFS (28%, adjusted HR, 0.67; 95% CI, 0.42–1.07; P = 0.094) or PFI (19 vs. 15.5 months, P = 0.146). In the TCGA cohort, only BRCA2 carriers harboring germline or somatic mutations in the RAD51-BD have prolonged 5-year PFS (46%; adjusted HR, 0.30; 95% CI, 0.13–0.68; P = 0.004) and 5-year OS (78%; adjusted HR, 0.09; 95% CI, 0.02–0.38; P = 0.001).

Conclusions: Among ovarian cancer patients, BRCA2 carriers with mutations located in the RAD51-BD (exon 11) have prolonged PFS, PFI, and OS. Clin Cancer Res; 24(2); 326–33. ©2017 AACR.



http://ift.tt/2B517Vy

Monoclonal Antibodies Directed against Cadherin RGD Exhibit Therapeutic Activity against Melanoma and Colorectal Cancer Metastasis

Purpose: New targets are required for the control of advanced metastatic disease. We investigated the use of cadherin RGD motifs, which activate the α2β1integrin pathway, as targets for the development of therapeutic monoclonal antibodies (mAb).

Experimental Design: Cadherin 17 (CDH17) fragments and peptides were prepared and used for immunization and antibody development. Antibodies were tested for inhibition of β1 integrin and cell adhesion, proliferation, and invasion assays using cell lines from different cancer types (colorectal, pancreatic, melanoma, and breast cancer). Effects of the mAbs on cell signaling were determined by Western blot analysis. Nude mice were used for survival analysis after treatment with RGD-specific mAbs and metastasis development.

Results: Antibodies against full-length CDH17 failed to block the binding to α2β1 integrin. However, CDH17 RGD peptides generated highly selective RGD mAbs that blocked CDH17 and vascular-endothelial (VE)-cadherin–mediated β1 integrin activation in melanoma and breast, pancreatic, and colorectal cancer cells. Antibodies provoked a significant reduction in cell adhesion and proliferation of metastatic cancer cells. Treatment with mAbs impaired the integrin signaling pathway activation of FAK in colorectal cancer, of JNK and ERK kinases in colorectal and pancreatic cancers, and of JNK, ERK, Src, and AKT in melanoma and breast cancer. In vivo, RGD-specific mAbs increased mouse survival after inoculation of melanoma and colorectal cancer cell lines to cause lung and liver metastasis, respectively.

Conclusions: Blocking the interaction between RGD cadherins and α2β1 integrin with highly selective mAbs constitutes a promising therapy against advanced metastatic disease in colon cancer, melanoma, and, potentially, other cancers. Clin Cancer Res; 24(2); 433–44. ©2017 AACR.

See related commentary by Marshall, p. 253



http://ift.tt/2B4RV3F

Postural control and the relation with cervical sensorimotor control in patients with idiopathic adult-onset cervical dystonia

Abstract

Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (rs ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.



http://ift.tt/2mAijxc

The utility of motor unit number estimation methods versus quantitative motor unit potential analysis in diagnosis of ALS

Amyotrophic Lateral Sclerosis (ALS) is a fatal anterior horn cell disorder characterized by progressive degeneration of both upper and lower motor neurons (Brooks et al., 2000). Showing denervation activity by needle electromyography (EMG) and detection of chronic neurogenic changes are essential for ALS diagnosis. Motor unit potential (MUP) analysis is the most commonly used method to show chronic neurogenic changes. However, MUP analysis provides information about reinnervation rather than motor unit loss.

http://ift.tt/2DBLFDy

A Rare Case of Cutaneous Metastases Secondary To Hepatocellular Carcinoma



http://ift.tt/2FHrZi4

Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens

Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity.

http://ift.tt/2FG2pdr

Oncolytic Virus: Regulatory Aspects from Quality Control to Clinical Studies

Oncolytic viruses, which include both naturally occurring wild-type viruses/attenuated viruses and genetically modified viruses, have recently been developed for use in innovative cancer therapies. Genetically modified oncolytic viruses possess the unique ability to replicate conditionally as a unique gene therapy product. Since oncolytic viruses exhibit prolonged persistence in patients, viral shedding and transmission to third parties should be major concerns for clinical trials along with the clinical safety and efficacy. Accordingly, studies are now underway to establish the safety and efficacy of oncolytic viruses.

http://ift.tt/2EKsRBi

Editorial: Oncolytic Virus and Gene Thearapy Application: Update 2018



http://ift.tt/2FGivn3

Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects

Attenuated Edmonston lineage measles virus (MV-Edm) vaccine strains can preferentially infect and lyse a wide variety of cancer cells. Oncolytic MV-Edm derivatives are genetically engineered to express the human carcinoembryonic antigen (MV-CEA virus) or the human sodium iodide symporter (MV-NIS virus) and are currently being tested in clinical trials against ovarian cancer, glioblastoma multiforme, multiple myeloma, mesothelioma, head and neck cancer, breast cancer and malignant peripheral nerve sheath tumors. This review describes the basic and preclinical data that facilitated the clinical translation of MV-Edm strains, and summarizes the clinical results of this oncolytic platform to date. Furthermore, we discuss the latest clinically relevant MV-Edm vector developments and creative strategies for future translational steps.

http://ift.tt/2EJ18kc

Oncolytic Viruses: The Best is Yet to Come

Oncolytic viruses are a promising anti-cancer platform, achieving significant pre-clinical and clinical milestones in recent years. A full arsenal of selective, safe, and effective viruses has been developed with some emerging pre-clinical research focusing on optimizing these therapies in the face of remaining challenges, both in the bloodstream and in the tumour microenvironment. Herein we discuss the recent progress in pre-clinical virotherapy research to address these challenges, with special focus on innovative strategies that seek to complement the current strengths of virotherapy, ensuring an optimal multi-faceted attack on cancer. This review highlights the research areas that we believe provide the most potential to increase the efficacy of this exciting biotherapy platform: cell carriers, tumour vascular destruction, microenvironment modulation, combination therapies, and virus-mediated anti-tumour immune responses.

http://ift.tt/2FD1pqd

Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System

Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy.

In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators.



http://ift.tt/2EJ15ow

Oncorine, the World First Oncolytic Virus Medicine and its Update in China

The oncolytic viruses now hold a promise of new therapeutic strategy for cancer. Its concept has inspired a wave of commercial research and development activities for the products of this category in China since 1998. The first commercialized oncolytic virus product in the world, Oncorine (H101), developed by Shanghai Sunway Biotech Co., Ltd since 1999, was approved by Chinese SFDA in November, 2005 for nasopharyngeal carcinoma in combination with chemotherapy after the phase III clinical trial, and finally acquired GMP certificate in August, 2006. This review introduces how Oncorine was successfully developed in China, and how the Chinese market responded after it was launched into the market in 2006.

http://ift.tt/2FJ7d1F

Emergence of Ad-Mediated Combination Therapy Against Cancer: What to Expect?

Novel treatment modalities are rapidly advancing toward clinical use as many malignant cancers still remain incurable. Adenovirus (Ad) in particular has been extensively researched as a promising alternative to conventional cancer therapy in the past decades. Although Ad has demonstrated promising therapeutic outcome and cancer specificity in preclinical models, its therapeutic efficacy in clinical trials is still insufficient due to several drawbacks such as rapid clearance of viral particles by host immune response, induction of acute inflammatory response, and hepatotoxicity. In this regard, combination of Ad with other cancer treatment modalities, such as chemotherapy, radiotherapy, or immunotherapy, can be an effective strategy to overcome the limitations of Ad. Cancerspecific and effective expression of multifunctional therapeutic genes by Ad can enhance the therapeutic profile of other treatment modalities, making it a logical candidate for combination therapy to combat malignant tumors.

http://ift.tt/2EJ0ZNG

Oncolytic Virotherapy and Gene Therapy Strategies for Hepatobiliary Cancers

Advanced liver cancers and biliary cancers represent diseases with dismal prognosis because of frequent local invasion and metastasis. Effective therapeutic agents for these cancers have not been established. Oncolytic viruses (OVs) constitute a novel class of promising, selective anticancer agents and recent studies have elucidated their unique features. Moreover, clinical trials are demonstrating promising results. Numerous OVs are being tested in preclinical models of hepatocellular carcinoma (HCC). The lead agent Pexa-Vec (pexastimogene devacirepvec, JX-594), a recombinant Wyeth strain vaccinia virus, has demonstrated preliminary evidence of safety and efficacy for HCC in clinical trials. Few other OVs have entered clinical testing. Relatively few preclinical studies and clinical trials exist for biliary cancers. In this review, we introduce various approaches using OVs to treat the intractable hepatobiliary cancers.

http://ift.tt/2FGEVEM

The Development of Oncoltyic Adenovirus Therapy in the Past and Future - For the Case of Pancreatic Cancer

Pancreatic cancer is an aggressive malignant disease and the efficacy of current treatments for unresectable diseases is quite limited despite recent advances. Gene therapy /virotherapy strategies may provide new options for the treatment of various cancers including pancreatic cancer. Oncolytic adenovirus shows an antitumoral effect via its intratumoral amplification and strong cytocidal effect in a variety of cancers and it has been employed for the development of potent oncolytic virotherapy agents for pancreatic cancer. Our ultimate goal is to develop an oncolytic adenovirus enabling the treatment of patients with advanced or spread diseases by systemic injection. Systemic application of oncolytic therapy mandates more efficient and selective gene delivery and needs to embody sufficient antitumor effect even with limited initial delivery to the tumor location. In this review, the current status of oncolytic adenoviruses from the viewpoints of vector design and potential strategies to overcome current obstacles for its clinical application will be described. We will also discuss the efforts to improve the antitumor activity of oncolytic adenovirus, in in vivo animal models, and the combination therapy of oncolytic adenovirus with radiation and chemotherapy.

http://ift.tt/2EMdCrv

TGF-β1 Causes EMT by Regulating N-Acetyl Glucosaminyl Transferases via Downregulation of Non Muscle Myosin II-A through JNK/P38/PI3K Pathway in Lung Cancer

Background: Epithelial to mesenchymal transition (EMT) is a major determinant of cancer metastasis and is closely linked with TGF-β1. Intracellular proteins, including E. Cadherin, N. Cadherin and Vimentin are directly related to EMT that affect cell migration and adhesion; on the other hand, non muscle myosin (NM) has a central role in cytokinesis, migration and adhesion.

Objective: We aimed to explore the association of EMT and metastasis with TGF-β1 through regulation of non-muscle myosin II-A (NMII-A) and its interaction with Hexosamine Biosynthesis Pathway (HBP).

Method: Protein expression changes were assessed by western blotting and immunofluorescent staining while transcription level changes were assessed by qRT-PCR. EMT was assessed by phenotypic analysis, wound healing, proliferation and transwell migration assay in vitro while in vivo studies were conducted in BALB/c nude mice for lung orthotopic and tail vein metastasis models.

Results: We demonstrated that regulation of JNK/ P38/PI3K by TGF-β1 led to down expression of NMII-A which promoted EMT and lung cancer metastasis. This down expression of NMII-A conversely upregulated the expression of Core 2 N-acetyl Glucosaminyl Transferase mucin type (C2GnT-M) and further facilitated up-regulation and down-regulation of N-acetylglucosaminyltransferase (GnT) -V and -III respectively; moreover, NMII-A K.D cells showed 3 times more tendency to migrate towards brain in vivo.

Conclusion: The study reports a novel pathway through which NMII-A negatively regulates EMT and metastasis via up regulation of C2GnT-M, GnT-V and down expression of GnT-III. These findings of lung cancer may further be required to study other cancer types.



http://ift.tt/2FHoh7W

Emergency Department Contribution to the Prescription Opioid Epidemic

We characterize the relative contribution of emergency departments (EDs) to national opioid prescribing, estimate trends in opioid prescribing by site of care (ED, office-based, and inpatient), and examine whether higher-risk opioid users receive a disproportionate quantity of their opioids from ED settings.

http://ift.tt/2mI9PES

Unusual yellow scaly colonic mucosal appearance: Tangier disease



http://ift.tt/2DBpnlg

An uncommon cecal bulge caused by a large appendiceal mucinous neoplasm



http://ift.tt/2D7VEiA

Double percutaneous endoscopic gastrostomies for a refractory duodenal fistula



http://ift.tt/2DBpn4K

Magnetic anchor-guided endoscopic submucosal dissection for gastric lesions (with video)

The feasibility of magnetic anchor-guided endoscopic submucosal dissection (MAG-ESD) using a neodymium magnet for gastric lesions has not been clarified. The aim of study was to evaluate the feasibility of MAG-ESD using neodymium magnets while treating gastric lesions.

http://ift.tt/2DaaqFJ

Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model

Abstract

Background

Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®).

Methods

C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination.

Results

Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment.

Conclusion

Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.



http://ift.tt/2D6E0vI

Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model

Abstract

Background

Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®).

Methods

C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination.

Results

Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment.

Conclusion

Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.



http://ift.tt/2D6E0vI

Perspectives on setting limits for RF contact currents: a commentary

Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and th...

http://ift.tt/2rctgKH

Generalized estimation of the ventilatory distribution from the multiple-breath washout: a bench evaluation study

The multiple-breath washout (MBW) is able to provide information about the distribution of ventilation-to-volume (v/V) ratios in the lungs. However, the classical, all-parallel model may return skewed results ...

http://ift.tt/2mHMoeY

"J BUON"[jour]; +46 new citations

46 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"J BUON"[jour]

These pubmed results were generated on 2018/01/15

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.



http://ift.tt/2myYJ4k

A rare case of pericarditis and pleural empyema secondary to transdiaphragmatic extension of pyogenic liver abscess

Transdiaphragmatic extension of pyogenic liver abscess is the rarest cause of pericarditis and pleural empyema. It is a rapidly progressive and highly lethal infection with mortality rates reaching 100% if lef...

http://ift.tt/2EKkUvS

Anemia in people on second line antiretroviral treatment in Lilongwe, Malawi: a cross-sectional study

Anemia is common among people living with HIV infection and is frequently associated with poor quality of life and poor prognosis. It has been well described in antiretroviral naïve individuals and those on no...

http://ift.tt/2FEMPyx

Monitoring vaccine and non-vaccine HPV type prevalence in the post-vaccination era in women living in the Basilicata region, Italy

A large free-of-charge quadrivalent HPV (qHPV) vaccination program, covering four cohorts annually (women 11, 14, 17 and 24 years), has been implemented in Basilicata since 2007. This study evaluated vaccine a...

http://ift.tt/2EKkRQI

Self-reported genital warts among sexually-active university students: a cross-sectional study

Genital warts are one of the most common forms of sexually-transmitted disease, but their epidemiology has yet to be thoroughly elucidated. The present study was designed to shed light on the prevalence of cli...

http://ift.tt/2FEMI65

Rationale and design of the CAROLINA® - cognition substudy: a randomised controlled trial on cognitive outcomes of linagliptin versus glimepiride in patients with type 2 diabetes mellitus

Type 2 diabetes mellitus is associated with cognitive dysfunction and an increased risk of dementia. Linagliptin is a glucose-lowering agent of the dipeptidyl peptidase-IV (DPP-IV) inhibitor class that is of p...

http://ift.tt/2EI65tN

Herbal Formula Modified Buzhong-Yiqi-Tang for Functional Constipation in Adults: A Meta-Analysis of Randomized Controlled Trials

Background. Herbal formula Modified Buzhong-Yiqi-Tang (MBYT) has been widely used for the treatment of functional constipation in East Asia, but its efficacy and safety are unclear. Methods. The study was to evaluate the efficacy and safety of MBYT for adult patients with functional constipation. Randomized clinical trials were selected according to predefined inclusion and exclusion criteria. Results. In total, twenty-five randomized controlled clinical trials were included with 2089 patients. There was evidence that MBYT treatment significantly improved the symptoms of functional constipation compared with stimulant laxatives, osmotic laxatives, and prokinetic agents. Our results also demonstrated that, when used as an adjuvant therapy, MBYT significantly improved the symptoms of functional constipation, when compared with osmotic laxatives alone, prokinetic agents alone, and biofeedback alone. Moreover, patients taking MBYT experienced fewer adverse events compared to the control groups. Conclusion. This review suggests that MBYT appears to have excellent therapeutic effect on adult patients with functional constipation and no serious side effects were identified. However, due to overall limited quality, the therapeutic benefit of MBYT may be substantiated to a limited degree. Better methodological quality and large controlled trials are expected to further quantify the therapeutic effect of MBYT.

http://ift.tt/2B31EaJ

Spotlight on recently published ICVTS articles



http://ift.tt/2DbxwQe

ACC/AATS/AHA/ASE/EACTS/HVS/SCA/SCAI/SCCT/SCMR/STS 2017 Appropriate use criteria for the treatment of patients with severe aortic stenosisA report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Valve Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Intervention

Abstract
The American College of Cardiology collaborated with the American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Valve Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons to develop and evaluate Appropriate Use Criteria (AUC) for the treatment of patients with severe aortic stenosis (AS). This is the first AUC to address the topic of AS and its treatment options, including surgical aortic valve replacement and transcatheter aortic valve replacement.A number of common patient scenarios experienced in daily practice were developed along with assumptions and definitions for those scenarios, which were all created using guidelines, clinical trial data and expert opinion in the field of AS. The '2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines' [1] and its 2017 focused update paper [2] were used as the primary guiding references in developing these indications. The Writing Group identified 95 clinical scenarios based on patient symptoms and clinical presentation, and up to 6 potential treatment options for those patients. A separate, independent Rating Panel was asked to score each indication from 1 to 9, with 1–3 categorized as 'Rarely Appropriate', 4–6 as 'May Be Appropriate' and 7–9 as 'Appropriate'.After considering factors such as symptom status, left ventricular function, surgical risk, and the presence of concomitant coronary or other valve disease, the Rating Panel determined that either surgical aortic valve replacement or transcatheter aortic valve replacement is appropriate in most patients with symptomatic AS at intermediate or high surgical risk; however, situations commonly arise in clinical practice in which the indications for surgical aortic valve replacement or transcatheter aortic valve replacement are less clear, including situations in which one form of valve replacement would appear reasonable when the other is less so, as do other circumstances in which neither intervention is the suitable treatment option.The purpose of this AUC is to provide guidance to clinicians in the care of patients with severe AS by identifying the reasonable treatment and intervention options available based on the myriad clinical scenarios with which patients present. This AUC document also serves as an educational and quality improvement tool to identify patterns of care and reduce the number of rarely appropriate interventions in clinical practice.

http://ift.tt/2B38pt9

The great debate flashes: surgery versus stereotactic body radiotherapy as the primary treatment of early-stage lung cancer

Abstract
Stereotactic body radiotherapy is gaining favour as an alternative therapeutic modality to surgery for patients with early-stage lung cancer. An exponential increase of contributions in the literature has generated a bulk of discordant evidence supporting therapeutic choice for the treatment of fit and medically inoperable patients. This 'Great Debate Flashes' paper aims at producing an up-to-date, concise and user-friendly review of the arguments that surgeons and radiation oncologists bring forward in the discussions with patients and colleagues.

http://ift.tt/2Df8HmB

Pulmonary wedge resection for Stage I non-small-cell lung cancer: possible alternative strategy to lobectomy

Lung cancerWedge resectionMargin distance

http://ift.tt/2B5hvWi

Reply to Sawabata

Sublobar resectionLung cancerLobectomySegmentectomyWedge resection

http://ift.tt/2DhdmV1

Adding vancomycin to perioperative prophylaxis decreases deep sternal wound infections in high-risk cardiac surgery patients

Abstract
OBJECTIVES
Perioperative prophylaxis with cephalosporins reduces sternal wound infections (SWIs) after cardiac surgery. However, more than 50% of coagulase-negative staphylococci, an important pathogen, are cephalosporin resistant. The aim of this study was to determine the impact of adjunctive vancomycin on SWIs in high-risk patients.
METHODS
We conducted a pre- and postintervention study in an academic hospital. Preintervention (2010–2011), all patients received prophylaxis with 1.5 g of cefuroxime for 48 h. During the intervention period (2012–2013), high-risk patients additionally received 1 g of vancomycin. High-risk status was defined as body mass index ≤18 or ≥ 30 kg/m2, reoperation, renal failure, diabetes mellitus, chronic obstructive pulmonary disease or immunosuppressive medication. Time series analysis was performed to study SWI trends and logistic regression to determine the effect of adding vancomycin adjusting for high-risk status.
RESULTS
A total of 3902 consecutive patients (n = 1915 preintervention and n = 1987 postintervention) were included, of which 1493 (38%) patients were high-risk patients. In the high-risk group, 61 of 711 (8.6%) patients had SWI before and 30 of 782 (3.8%) patients after the intervention. Focusing on deep SWI (DSWI), 33 of 711 (4.6%) patients had DSWI before and 13 of 782 (1.7%) patients afterwards; the absolute risk difference of 2.9% yielded a number-needed-to-treat of 34 to prevent 1 DSWI. Corrected for high-risk status, adding vancomycin significantly reduced the overall SWI rate (odds ratio 0.42, 95% confidence interval 0.26–0.67; P < 0.001) and the subset of DSWI (odds ratio 0.30, 95% confidence interval 0.14–0.62; P = 0.001). The rate of SWI in low-risk patients remained unchanged.
CONCLUSIONS
Adding vancomycin to standard antibiotic prophylaxis in high-risk patients significantly reduced DSWI after cardiac surgery.

http://ift.tt/2B3fvO7

Outcomes of surgery for infective endocarditis: a single-centre experience of 801 patients

Abstract
OBJECTIVES
Infective endocarditis (IE) remains a life-threatening disease, despite the improvement in diagnostic and therapeutic measures. We reviewed our outcomes for all adults who underwent surgery for endocarditis at our centre.
METHODS
Between January 1995 and December 2013, 801 patients [586 men (73%)] underwent surgery for IE. Mean age was 60 ± 14.7 years. Native endocarditis (NE) was present in 372 patients (46%), and 379 (47%) patients had active IE. The mean follow-up period was 4.6 ± 4.75 years (maximum 20 years).
RESULTS
Single-valve endocarditis was present in 551 (69%) patients (392 aortic and 159 mitral). Multivalve involvement was present in 250 (31%) patients. Preoperative stroke was present in 149 (19%) patients, while 62 (8%) patients were on dialysis prior to surgery. Valve repair was possible in 122 (15%) patients, while 679 (85%) patients underwent valve replacement. Mechanical valves were used in 312 (39%) patients. Aortic homografts were used in 84 (10%) patients. Early mortality occurred in 64 (8%) patients. Overall survival at 5, 10 and 20 years was 68%, 45% and 8.4%, respectively. Postoperative stroke occurred in 16 (2%) patients, while 59 (7%) patients required new dialysis postoperatively. Multivariate analysis revealed active IE (P = 0.002), preoperative dialysis (P = 0.007), previous coronary artery bypass grafting (P = 0.001), root abscess (P = 0.006) and tricuspid valve or multivalve involvement (P = 0.002) to be predictors of early mortality. The need for dialysis (P < 0.001), previous coronary artery bypass grafting (P < 0.001) and mitral valve (P = 0.002) and tricuspid valve/multivalve involvement (P < 0.001) were significant predictors of late mortality.
CONCLUSIONS
Active IE is associated with high perioperative mortality especially with multivalve and aortic root involvement. Preoperative stroke has no impact on perioperative mortality. Long-term survival for those who survived the immediate postoperative period is satisfactory, and mechanical valves are associated with the best long-term survival.

http://ift.tt/2DdIk09

Small-sized conduits in the right ventricular outflow tract in young children: bicuspidalized homografts are a good alternative to standard conduits

Abstract
OBJECTIVES
Downsizing a homograft (HG) through bicuspidalization has been used for more than 2 decades to overcome the shortage of small-sized conduits for reconstruction of the right ventricular outflow tract (RVOT) in young children. Our goal was to investigate the durability of bicuspidalized HGs compared with other small HGs.
METHODS
A retrospective analysis of 93 conduits ≤20 mm, implanted over 23 years, was performed. The end-points were survival, structural valve degeneration and conduit replacement. The conduits comprised 40 pulmonary HGs, 12 aortic HGs, 17 bicuspidalized HGs and 24 xenografts.
RESULTS
The median age, mean conduit diameter and z-value at implantation were 1.4 (interquartile range 0.3–3) years, 16.5 ± 2.7 mm and 2.8 ± 1.3, respectively. Valve position was heterotopic in 59 patients and orthotopic in 34 patients. At a mean follow-up period of 7.6 ± 5.9 years, the hospital survival rate was 89%. Freedom from explant at 5 and 10 years was 83 ± 5% and 52 ± 6%, respectively. Freedom from structural valve degeneration was 79 ± 5% at 5 years and 47 ± 6% at 10 years [68 ± 8% for pulmonary HG, 42 ± 16% for bicuspidalized HG, 31 ± 15% for aortic HG and 20 ± 9% for xenografts (log rank P < 0.001)]. Multivariable analysis indicated an increased risk for structural valve degeneration with smaller conduit size (hazard ratio 0.79, 95% confidence interval 0.67–0.94; P < 0.008), extra-anatomic position (hazard ratio 2.71, 95% confidence interval 1.33–5.50; P = 0.006) and the use of xenografts compared with non-downsized pulmonary HGs (hazard ratio 4.90, 95% confidence interval 2.23–10.76; P < 0.001).
CONCLUSIONS
Appropriately sized pulmonary HGs remain the most durable option for a right ventricular outflow tract conduit in young children. However, when a small pulmonary HG is unavailable, bicuspidalization offers a valid alternative, preferable to xenograft conduits, at mid-term follow-up.

http://ift.tt/2B4lMct

The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): second report

Abstract
OBJECTIVES
The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) was founded in Berlin, Germany. EUROMACS is supported fully by the European Association for Cardio-Thoracic Surgery (EACTS) and, since 2014, has functioned as a committee of the EACTS. The purpose of having the EUROMACS as a part of the EACTS is to accumulate clinical data related to long-term mechanical circulatory support for scientific purposes and to publish annual reports.
METHODS
Participating hospitals contributed surgical and cardiological pre-, peri- and long-term postoperative data of mechanical circulatory support implants to the registry. Data for all implants performed from 1 January 2011 to 31 December 2016 were analysed. Several auditing methods were used to monitor the quality of the data. Data could be provided for in-depth studies, and custom data could be provided at the request of clinicians and scientists. This report includes updates of patient characteristics, implant frequency, mortality rates and adverse events.
RESULTS
Fifty-two hospitals participated in the registry. This report is based on 2947 registered implants in 2681 patients. Survival of adult patients (>17 years of age) with continuous-flow left ventricular assist devices with a mean follow-up of 391 days was 69% (95% confidence interval 66–71%) 1 year after implantation. On average, patients were observed for 12 months (median 7 months, range 0–70 months). When we investigated for adverse events, we found an overall event rate per 100 patient-months of 3.56 for device malfunction, 6.45 for major bleeding, 6.18 for major infection and 3.03 for neurological events within the first 3 months after implantation.
CONCLUSIONS
Compared to the first EUROMACS report, the number of participating hospitals increased from 21 to 52 (+148%), whereas the number of registered implants more than tripled from 825 to 2947 (+257%). The increase in the number of participating hospitals led us to increase the quality control measures through data input control, on-site audits and statistical analyses.

http://ift.tt/2De6x6B

Long-segment pulmonary artery resection to avoid pneumonectomy: long-term results after prosthetic replacement

Abstract
OBJECTIVES
Resection of a long pulmonary artery (PA) segment infiltrated by tumour and reconstruction by conduit interposition or wide patch is a challenging but feasible option to avoid pneumonectomy. Our goal was to report the long-term results of our experience with this type of operation using various techniques and materials.
METHODS
Between 1991 and 2015, 24 patients underwent sleeve resection of a long PA segment or extended resection (>2.5 cm) of 1 aspect of the circumference of the PA associated with lobectomy for centrally located lung cancer. Materials used for conduit reconstruction (20 patients) included pulmonary vein in 12 patients, autologous pericardium in 4, porcine pericardium in 3 and bovine pericardium in 1. Patches used in 4 patients consisted of porcine pericardium (2 patients) and pulmonary vein (2 patients).
RESULTS
Twenty-three patients underwent left upper lobectomy without associated bronchoplasty. One patient underwent bronchovascular left upper sleeve lobectomy. The postoperative morbidity rate was 29.1%. No complications related to the reconstructive procedure occurred. There were no postoperative deaths. Complete patency of the reconstructed PA was shown in all patients by postoperative contrast computed tomography performed every 6 months. Pathological tumour stage ranged from I to IIIA. Five-year overall survival and disease-free survival rates were 69.9% and 52.7%, respectively, at a median follow-up of 41 months.
CONCLUSIONS
Resection of the long PA segment followed by conduit or wide patch reconstruction is a feasible, safe and effective option to avoid pneumonectomy. Different biological materials can be used to provide adequate tissue characteristics; the choice is made on a case-by-case basis. Long-term results confirm the oncological reliability of this operation.

http://ift.tt/2B4D1dx

Multicentric evaluation of the impact of central tumour location when comparing rates of N1 upstaging in patients undergoing video-assisted and open surgery for clinical Stage I non-small-cell lung cancer†

Abstract
OBJECTIVES
Large retrospective series have indicated lower rates of cN0 to pN1 nodal upstaging after video-assisted thoracic surgery (VATS) compared with open resections for Stage I non-small-cell lung cancer (NSCLC). The objective of our multicentre study was to investigate whether the presumed lower rate of N1 upstaging after VATS disappears after correction for central tumour location in a multivariable analysis.
METHODS
Consecutive patients operated for PET-CT based clinical Stage I NSCLC were selected from prospectively managed surgical databases in 11 European centres. Central tumour location was defined as contact with bronchovascular structures on computer tomography and/or visibility on standard bronchoscopy.
RESULTS
Eight hundred and ninety-five patients underwent pulmonary resection by VATS (n = 699, 9% conversions) or an open technique (n = 196) in 2014. Incidence of nodal pN1 and pN2 upstaging was 8% and 7% after VATS and 15% and 6% after open surgery, respectively. pN1 was found in 27% of patients with central tumours. Less central tumours were operated on by VATS compared with the open technique (12% vs 28%, P < 0.001). Logistic regression analysis showed that only tumour location had a significant impact on N1 upstaging (OR 6.2, confidence interval 3.6–10.8; P < 0.001) and that the effect of surgical technique (VATS versus open surgery) was no longer significant when accounting for tumour location.
CONCLUSIONS
A quarter of patients with central clinical Stage I NSCLC was upstaged to pN1 at resection. Central tumour location was the only independent factor associated with N1 upstaging, undermining the evidence for lower N1 upstaging after VATS resections. Studies investigating N1 upstaging after VATS compared with open surgery should be interpreted with caution due to possible selection bias, i.e. relatively more central tumours in the open group with a higher chance of N1 upstaging.

http://ift.tt/2DdId4J

Cerebral strokes in children on intracorporeal ventricular assist devices: analysis of the EUROMACS Registry

Abstract
OBJECTIVES
Little is known about cerebral strokes in paediatric patients supported by intracorporeal continuous-flow ventricular assist devices.
METHODS
We retrospectively investigated patients younger than 19 years of age who were treated with an intracorporeal continuous-flow ventricular assist device in the European Registry for Patients with Mechanical Circulatory Support (EUROMACS) database. The patients were stratified by body surface area in Group 1 [<1.2 m2 (n = 13)] and Group 2 [≥1.2 m2 (n = 38)]. Cerebral strokes, both ischaemic and haemorrhagic, were studied.
RESULTS
Of the 2941 patients with ventricular assist device (VAD) implants listed in the database, 124 (4%) patients were less than 19 years of age. Fifty-one of them (2%) were supported with a continuous-flow ventricular assist device. Group 1 (6 female and 7 male) had a mean age (±SD) of 9 ± 2.3 years compared with 15.6 ± 1.8 years in Group 2 (21 female and 17 male). Three (23%) patients died in Group 1 on VAD support, whereas 5 (13%) patients died in Group 2 (P = 0.21; log-rank test). Seven (54%) patients with a VAD in Group 1 and 17 (45%) patients in Group 2 underwent transplantation (P = 0.29); of these, 1 (8%) patient recovered (Group 1) with subsequent device explantation. The other patients, 2 in Group 1 and 16 in Group 2, were still on device support at the time of the analysis. There were no cerebral strokes in Group 1, but 4 cerebral strokes (11% of Group 2, 8% of a total of 51 patients in Groups 1 and 2 combined) occurred in Group 2 (3 patients died; P = 0.26; log-rank test). Taken together, the incidence of cerebral strokes in this paediatric cohort of patients with an intracorporeal VAD was 0.1 per patient-year.
CONCLUSIONS
The incidence of cerebral strokes in children with intracorporeal VADs (0.1 per patient-year) seems to be low irrespective of the body surface area.

http://ift.tt/2B4lB0N