Recently, α-MoTe2, a 2D transition-metal dichalcogenide (TMD), has shown outstanding properties, aiming at future electronic devices. Such TMD structures without surface dangling bonds make the 2D α-MoTe2 a more favorable candidate than conventional 3D Si on the scale of a few nanometers. The bandgap of thin α-MoTe2 appears close to that of Si and is quite smaller than those of other typical TMD semiconductors. Even though there have been a few attempts to control the charge-carrier polarity of MoTe2, functional devices such as p–n junction or complementary metal–oxide–semiconductor (CMOS) inverters have not been reported. Here, we demonstrate a 2D CMOS inverter and p–n junction diode in a single α-MoTe2 nanosheet by a straightforward selective doping technique. In a single α-MoTe2 flake, an initially p-doped channel is selectively converted to an n-doped region with high electron mobility of 18 cm2 V−1 s−1 by atomic-layer-deposition-induced H-doping. The ultrathin CMOS inverter exhibits a high DC voltage gain of 29, an AC gain of 18 at 1 kHz, and a low static power consumption of a few nanowatts. The results show a great potential of α-MoTe2 for future electronic devices based on 2D semiconducting materials.
Homogeneous 2D MoTe2 p–n junction and complementary metal–oxide–semiconductor (CMOS) inverters integrated by selective n-type doping are demonstrated, which are obtained by H-diffusion during atomic layer deposition on initial p-type MoTe2. This 2D α-MoTe2 CMOS inverters with a p–n junction exhibits promising static and dynamic performances, forecasting future prospects to overcome the limits of 3D Si CMOS.
http://ift.tt/2qS85cf
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.