This study proposes a magnetically actuated microscaffold with the capability of targeted mesenchymal stem cell (MSC) delivery for articular cartilage regeneration. The microscaffold, as a 3D porous microbead, is divided into body and surface portions according to its materials and fabrication methods. The microscaffold body, which consists of poly(lactic-co-glycolic acid) (PLGA), is formed through water-in-oil-in-water emulsion templating, and its surface is coated with amine functionalized magnetic nanoparticles (MNPs) via amino bond formation. The porous PLGA structure of the microscaffold can assist in cell adhesion and migration, and the MNPs on the microscaffold can make it possible to steer using an electromagnetic actuation system that provides external magnetic fields for the 3D locomotion of the microscaffold. As a fundamental test of the magnetic response of the microscaffold, it is characterized in terms of the magnetization curve, velocity, and 3D locomotion of a single microscaffold. In addition, its function with a cargo of MSCs for cartilage regeneration is demonstrated from the proliferation, viability, and chondrogenic differentiation of D1 mouse MSCs that are cultured on the microscaffold. For the feasibility tests for cartilage repair, 2D/3D targeting of multiple microscaffolds with the MSCs is performed to demonstrate targeted stem cell delivery using the microscaffolds and their swarm motion.
A magnetically actuated microscaffold is developed for targeted stem cell delivery. The microscaffold, which has a 3D porous microbead structure, supports mesenchymal stem cell adhesion and migration and is driven to a target site by external magnetic fields. Its function as a cell carrier through 2D/3D targeting tests using multiple microscaffolds containing D1 mouse mesenchymal stem cells is demonstrated.
http://ift.tt/2pqFA4D
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.