Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 8 Μαΐου 2017

Highly Efficient Virus Rejection with Self-Organized Membranes Based on a Crosslinked Bicontinuous Cubic Liquid Crystal

To remove viruses from water, the use of self-assembling liquid crystals is presented as a novel method for the synthesis of membranes with a regular pore size (below 1 nm) and controlled pore structures. Nanostructured bicontinuous cubic liquid-crystalline (LC) thin films are photopolymerized onto a polysulfone support layer. It is found that these membranes reject the virus, Qβ bacteriophage (≈20 nm diameter) by >99.9999%. Prepressurization of the membrane appears to enhance their virus rejection properties. This is the first example of nanostructured LC membranes that are used for virus rejection, for which they show great potential.

Thumbnail image of graphical abstract

Virus rejection by a liquid crystal membrane is realized for the first time using a self-assembling mesogen stabilized by crosslinking in an ordered bicontinuous cubic phase. This structure allows for the level of control over pore size distribution necessary for efficient rejection of small particles including viruses while allowing for permeation of water. Applying pressurization to the membrane prior to testing results in improved virus removal efficiency and water flux.



http://ift.tt/2qVoey4

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.