Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 15 Νοεμβρίου 2018

Ultrafast Sodium/Potassium‐Ion Intercalation into Hierarchically Porous Thin Carbon Shells

Advanced Materials Ultrafast Sodium/Potassium‐Ion Intercalation into Hierarchically Porous Thin Carbon Shells

Exploitation of carbon as the anode for sodium‐ and potassium‐ion batteries is critical to develop inexpensive battery systems. Carbon material with relaxed graphitic layers (interlayer spacing reaching 0.375 nm) is developed for deep, fast, and reversible insertion of large metallic ions in the engineered lattice. The proposed methodology provides new ways of achieving high‐performing electrodes for new battery systems.


Abstract

The large‐scale application of sodium/potassium‐ion batteries is severely limited by the low and slow charge storage dynamics of electrode materials. The crystalline carbons exhibit poor insertion capability of large Na+/K+ ions, which limits the storage capability of Na/K batteries. Herein, porous S and N co‐doped thin carbon (S/N@C) with shell‐like (shell size ≈20–30 nm, shell wall ≈8–10 nm) morphology for enhanced Na+/K+ storage is presented. Thanks to the hollow structure and thin shell‐wall, S/N@C exhibits an excellent Na+/K+ storage capability with fast mass transport at higher current densities, leading to limited compromise over charge storage at high charge/discharge rates. The S/N@C delivers a high reversible capacity of 448 mAh g‐1 for Na battery, at the current density of 100 mA g‐1 and maintains a discharge capacity up to 337 mAh g‐1 at 1000 mA g‐1. Owing to shortened diffusion pathways, S/N@C delivers an unprecedented discharge capacity of 204 and 169 mAh g‐1 at extremely high current densities of 16 000 and 32 000 mA g‐1, respectively, with excellent reversible capacity for 4500 cycles. Moreover, S/N@C exhibits high K+ storage capability (320 mAh g‐1 at current density of 50 mA g‐1) and excellent cyclic life.



https://ift.tt/2OLv583

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.