Abstract
Vector-borne microbes influence pathogen transmission and blood microbiomes, thereby affecting the emergence of infectious diseases. Thus, understanding the relationship between host and vector microbiomes is of importance. In this study, we investigated the bacterial community composition, diversity and assembly of the flea (Rhadinopsylla dahurica vicina), torsalo (Hypoderma curzonial), and the blood and gut of their shared pika host, Ochotona curzoniae. Bartonella, Sphingomonas and Bradyrhizobium were enriched in blood, while Wolbachia and Fusobacterium were more abundant in fleas and torsaloes. Most of potential pathogenic microbes (belonging to Fusobacterium, Rickettsia, Kingella, Porphyromonas, Bartonella and Mycoplasma) were present in the blood of pikas and their vectors. Blood communities were more similar to those from fleas than other sample types, and were independent of host factors or geographical sites. Notably, blood microbes originate mainly from fleas rather than gut or torsaloes. Interestingly, the community assembly of blood, fleas or torsaloes was primarily governed by stochastic processes, while the gut microbiome was determined by deterministic processes. Ecological drift plays a dominant role in the assembly of blood and flea microbiomes. These results reflect the difficulty for predicting and regulating the microbial ecology of fleas for the prevention of potential microbiome-associated diseases.https://ift.tt/2HIw2iV
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.