Abstract
Array-format cell-culture carriers providing tunable matrix cues are instrumental in current cell biology and bioengineering. A new solvent-assisted demolding approach for the fabrication of microcavity arrays with very small feature sizes down to single-cell level (3 µm) of very soft biohybrid glycosaminoglycan–poly(ethylene glycol) hydrogels (down to a shear modulus of 1 kPa) is reported. It is further shown that independent additional options of localized conjugation of adhesion ligand peptides, presentation of growth factors through complexation to gel-based glycosaminoglycans, and secondary gel deposition for 3D cell embedding enable a versatile customization of the hydrogel microcavity arrays for cell culture studies. As a proof of concept, cell-instructive hydrogel compartment arrays are used to analyze the response of human hematopoietic stem and progenitor cells to defined biomolecular and spatial cues.
A solvent-assisted demolding approach is reported for the fabrication of microcavity arrays from very soft glycosaminoglycan–poly(ethylene glycol) hydrogels with sizes down to the single-cell level. Adhesion ligand conjugation, growth-factor loading, and secondary gel deposition enable a versatile customization, which is demonstrated in experiments with human hematopoietic stem and progenitor cells.
http://ift.tt/2yaRWGj
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.