Recommender systems are widespread due to their ability to help Web users surf the Internet in a personalized way. For example, collaborative recommender system is a powerful Web personalization tool for suggesting many useful items to a given user based on opinions collected from his neighbors. Among many, similarity measure is an important factor affecting the performance of the collaborative recommender system. However, the similarity measure itself largely depends on the overlapping between the user profiles. Most of the previous systems are tested on a predefined number of common items and neighbors. However, the system performance may vary if we changed these parameters. The main aim of this paper is to examine the performance of the collaborative recommender system under many similarity measures, common set cardinalities, rating mean groups, and neighborhood set sizes. For this purpose, we propose a modified version for the mean difference weight similarity measure and a new evaluation metric called users' coverage for measuring the recommender system ability for helping users. The experimental results show that the modified mean difference weight similarity measure outperforms other similarity measures and the collaborative recommender system performance varies by varying its parameters; hence we must specify the system parameters in advance.
from #Medicine via ola Kala on Inoreader http://ift.tt/24YMX0l
via IFTTT
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
-
▼
Ιουνίου
(946)
-
▼
Ιουν 19
(24)
- Micromachines, Vol. 7, Pages 104: A Robot-Assisted...
- Inorganics, Vol. 4, Pages 19: Monoanionic Tin Olig...
- Humanities, Vol. 5, Pages 47: “I Felt Like My Life...
- Micromachines, Vol. 7, Pages 105: Fabrication of D...
- Entropy, Vol. 18, Pages 229: Investigating Aging-R...
- Energies, Vol. 9, Pages 449: Variability Character...
- IJGI, Vol. 5, Pages 99: Evaluation of Deterministi...
- Atoms, Vol. 4, Pages 17: Series of Broad Resonance...
- Applied Sciences, Vol. 6, Pages 179: Output Proper...
- MCA, Vol. 21, Pages 25: Fixed Order Controller for...
- Modeling heterogeneity in the pluripotent state: A...
- SYMPOSIUM: First international conference on myositis
- Diagnosis and classification of idiopathic inflamm...
- New ways to subclassify patients with myositis
- Issue Information - Editorial Board
- Effect of Collaborative Recommender System Paramet...
- Key Molecular Mechanisms of Chaiqinchengqi Decocti...
- Immunopathological Features of Canine Myocarditis ...
- Herbal Medicines for Treating Metabolic Syndrome: ...
- The Effect of Glutamate Receptor Agonists on Mouse...
- Effects of Total Alkaloids of Sophora alopecuroide...
- High Glucose-Induced PC12 Cell Death by Increasing...
- Isolation and Identification of the Antimicrobial ...
- Assessment of Tree Leaves Flakes Mixed with Crude ...
-
▼
Ιουν 19
(24)
- ► Φεβρουαρίου (793)
Αναζήτηση αυτού του ιστολογίου
Κυριακή 19 Ιουνίου 2016
Effect of Collaborative Recommender System Parameters: Common Set Cardinality and the Similarity Measure
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.