Abstract
The sensorimotor dorsal stream is known to activate in both overt and covert speech production. However, overt production produces sensory consequences that are absent during covert production. Thus, the purpose of the current study is to investigate differences in dorsal stream activity between these two production conditions across the time course of utterances. Electroencephalography (EEG) was recorded from 68 channels while 23 participants overtly (Op) and covertly (Cp) produced orthographically cued bisyllabic targets. Sensorimotor mu and auditory alpha components (from anterior and posterior aspects of the dorsal stream) were identified using independent component analysis (ICA). Event-related spectral perturbation (ERSP) analyses identified changes in mu and alpha oscillatory power over time, while intercomponent phase coherence (IPC) measured anterior–posterior connectivity in the two conditions. Results showed greater beta (15–25 Hz) suppression during speech planning across left and right hemisphere sensorimotor and temporal ICs for Op relative to Cp. By contrast, greater intrahemispheric beta coherence was observed for Cp compared to Op during speech planning. During execution, greater beta suppression was observed along with greater low frequency (< 10 Hz) power enhancement and intrahemispheric phase coherence in Op compared to Cp. The findings implicate low frequency sensorimotor and posterior temporal phase coherence in the integration of somatosensory and acoustic feedback in overt relative to covert execution. Findings are consistent with early frontal–temporal forward models involved in planning and execution with modulations depending on whether the task goal is internal or overt syllable production.
https://ift.tt/2S7e62g
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.