3D DNA FISH of circulating tumor cells demonstrates a higher resolution for genomic aberrations compared to 2D imaging modalities.
Abstract
Tumor biopsy is the gold standard for the assessment of clinical biomarkers for treatment. However, tumors change dynamically in response to therapy, and there remains a need for a more representative biomarker that can be assayed over the course of treatment. Circulating tumor cells (CTCs) may provide clinically important and comprehensive tumoral information that is predictive of treatment response and outcome. Blood samples were processed for CTCs from 56 patients using the ClearCell FX system. Captured cells were phenotyped for CTC clusters and markers for immunotherapy (PD‐L1) CTC chromosomal architecture (ALK, EGFR). CTCs were isolated in 11/23 (47.8%) of head and neck cancer (HNC) patients and 17/33 (51.5%) of non‐small‐cell lung cancer (NSCLC) patients. CTCs were determined to be PD‐L1‐positive in 6/11 (54.4%) HNC and 11/17 (64.7%) NSCLC cases, respectively. 3D chromosomal DNA FISH for ALK and EGFR molecular targets showed better resolution than in 2D when imaging CTCs. HNC CTC‐positive patients had shorter progression‐free survival (PFS) (hazard ratio[HR]: 4.946; 95% confidence internal[CI]:1.571‐15.57; P = 0.0063), and PD‐L1‐positive CTCs were found to be significantly associated with worse outcome ([HR]:5.159; 95% [CI]:1.011‐26.33; P = 0.0485). In the advanced stage NSCLC patient cohort, PFS was not found to be associated with CTCs prior to therapy ([HR]:2.246; 95% [CI]:0.9565‐5.273; P = 0.0632), nor the presence of PD‐L1 expression ([HR]:1.646; 95% [CI]:0.5128‐5.283; P = 0.4023). This study demonstrated that CTCs are predictive of poorer outcomes in HNC and provides distinct and separate utility for CTCs in HNC and NSCLC, which may be more representative of the disease burden and overall survival than the parameters used to measure them.
https://ift.tt/2DH8uri
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.