Abstract
Due to their 3D cross-linked networks and tunable physicochemical properties, polymer hydrogels with different sizes are applied widely in tissue engineering, drug-delivery systems, pollution regulation, ionic conducting electrolytes, agricultural drought-resistance, cosmetics, and the food industry. Novel, environmentally friendly, and efficient oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels have gained increasing attention. Herein, the recent advances on the use of novel enzyme-initiated systems for hydrogel polymerization, including the mechanisms, and molding of polymeric and hybrid-polymeric networks are reviewed. Preliminary progress related to interfacial enzymatic polymerization for the generation of hybrid micro/nanogels is introduced as an emerging initiating approach. In addition, certain biological applications in tissue engineering, bioimaging, and therapy are demonstrated step by step. Finally, some perspectives on the safety profile of enzymatic formed hydrogels, new enzymatic systems, and potential theranostic applications are discussed.
Environmentally friendly, efficient enzymatic polymerization and hydrogelation has attracted increasing attention. A systematic overview of the mechanisms of oxidoreductase-initiated radical polymerization is provided. With respect to the unique characteristics of enzymatic reactions, recent research on enzymatic molding and biomedical applications of hydrogels and micro/nanogels are also summarized.
http://ift.tt/2FpRVBm
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.