Abstract
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through noninvasive theranostic approaches. Herein, a new strategy is reported to achieve in vivo metabolic labeling of bacteria through the use of MIL-100 (Fe) nanoparticles (NPs) as the nanocarrier for precise delivery of 3-azido-d-alanine (d-AzAla). After intravenous injection, MIL-100 (Fe) NPs can accumulate preferentially and degrade rapidly within the high H2O2 inflammatory environment, releasing d-AzAla in the process. d-AzAla is selectively integrated into the cell walls of bacteria, which is confirmed by fluorescence signals from clickable DBCO-Cy5. Ultrasmall photosensitizer NPs with aggregation-induced emission characteristics are subsequently designed to react with the modified bacteria through in vivo click chemistry. Through photodynamic therapy, the amount of bacteria on the infected tissue can be significantly reduced. Overall, this study demonstrates the advantages of metal–organic-framework-assisted bacteria metabolic labeling strategy for precise bacterial detection and therapy guided by fluorescence imaging.
A novel strategy for in vivo bacterial metabolic labeling and precise antibacterial therapy is developed based on the combination of a metal–organic framework (MOF) as a carrier for amino acid delivery and photosensitizers with aggregation-induced emission characteristics for image and therapy. The formulated MOF-assisted strategy represents a promising alternative to antibiotics in image-guided antibacterial therapy.
http://ift.tt/2Fi8fB3
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.