Publication date: 15 April 2016
Source:Bioorganic & Medicinal Chemistry, Volume 24, Issue 8
Author(s): Pervez Ahmad, Hyunjung Woo, Kyu-Yeon Jun, Adnan A. Kadi, Hatem A. Abdel-Aziz, Youngjoo Kwon, A.F.M. Motiur Rahman
A series of pyrazoline derivatives (5) were synthesized in 92–96% yields from chalcones (3) and hydrazides (4). Subsequently, topo-I and IIα-mediated relaxation and antiproliferative activity assays were evaluated for 5. Among the tested compounds, 5h had a very strong topo-I activity of 97% (Camptothecin, 74%) at concentration of 100μM. Nevertheless, all the compounds 5a–5i showed significant topo II inhibitory activity in the range of 90–94% (Etoposide, 96%) at the same concentration. Cytotoxic potential of these compounds was tested in a panel of three human tumor cell lines, HCT15, BT474 and T47D. All the compounds showed strong activity against HCT15 cell line with IC50 at the range of 1.9–10.4μM (Adriamycin, 23.0; Etoposide, 6.9; and Camptothecin, 7.1μM). Moreover, compounds 5c, 5f and 5i were observed to have strong antiproliferative activity against BT474 cell lines. Since, compound 5d showed antiproliferative activity at a very low IC50 thus 5d was then selected to study on their mode of action with diverse methods of ATP competition assay, ATPase assay and DNA-topo IIα cleavable complex assay and the results revealed that it functioned as a ATP-competitive human topoisomerase IIα catalytic inhibitor. Further evaluation of endogenous topo-mediated DNA relaxation in cells has been conducted to find that, 5d inhibited endogenous topo-mediated pBR322 plasmid relaxation is more efficient (78.0±4.7% at 50μM) than Etoposide (36.0±1.7% at 50μM).
Graphical abstract
from #Medicine via ola Kala on Inoreader http://ift.tt/1RDNkwd
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.