Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 20 Δεκεμβρίου 2018

A simplified mechanism for anisotropic constriction in Drosophila mesoderm [RESEARCH ARTICLE]

Konstantin Doubrovinski, Joel Tchoufag, and Kranthi Mandadapu

Understanding how forces and material properties give rise to tissue shapes is a fundamental issue in developmental biology. Although Drosophila gastrulation is a well-used system for investigating tissue morphogenesis, a consensus mechanical model that explains all the key features of this process does not exist. One key feature of Drosophila gastrulation is its anisotropy: the mesoderm constricts much more along one axis than along the other. Previous explanations have involved graded stress, anisotropic stresses or material properties, or mechanosensitive feedback. Here, we show that these mechanisms are not required to explain the anisotropy of constriction. Instead, constriction can be anisotropic if only two conditions are met: the tissue is elastic, as was demonstrated in our recent study; and the contractile domain is asymmetric. This conclusion is general and does not depend on the values of model parameters. Our model can explain results from classical tissue-grafting experiments and from more-recent laser ablation studies. Furthermore, our model may provide alternative explanations for experiments in other developmental systems, including C. elegans and zebrafish.



http://bit.ly/2BxXF8p

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.