Abstract
Previous work on sensorimotor synchronization has investigated the dynamics of finger tapping and how individual movement trajectories contribute to timing accuracy via asymmetry in movement velocities. The present study investigated sensorimotor synchronization (in-phase) and syncopation (anti-phase) to both an auditory metronome and a visual flashing light at multiple frequencies to understand how individual movement phases contribute to the variability of timekeeping and error correction in different sensory modalities and with different task constraints. Results demonstrate that the proportional time spent in both the upward phase of movement and the holding phase of movement (time spent on the surface of the table) remain relatively invariant across both stimulus modalities and across tapping styles (syncopation and synchronization), but changes with interval duration, increasing as interval duration increases. The time spent in the downward phase of movement did significantly differ across stimulus modality and tapping style, increasing during both visuomotor timing and syncopation, accompanied by a significant decrease in flexion velocity during syncopation. Extension velocity and flexion time were found to be the main contributors to differences between visual and auditory timing, while flexion velocity and flexion time were found to be the main contributors to differences between synchronization and syncopation. No correlations were found between asynchrony and the upward, downward, or holding phases of movement, suggesting the existence of multiple error correction strategies.
https://ift.tt/2SHn1Zc
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.