Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Παρασκευή 16 Νοεμβρίου 2018

Heteroatom‐Doped Carbon Materials for Hydrazine Oxidation

Advanced Materials Heteroatom‐Doped Carbon Materials for Hydrazine Oxidation

The development of heteroatom‐doped carbon electrocatalysts for the hydrazine oxidation reaction for direct hydrazine fuel cells and their general properties and structure‐related electrocatalytic activities are described with reference to the recent research progress and advancements. Perspectives on the different future research directions for these materials are also discussed.


Abstract

The key in designing efficient direct liquid fuel cells (DLFCs), which can offer some solutions to society's grand challenges associated with sustainability and energy future, currently lies in the development of cost‐effective electrocatalysts. Among the many types of fuel cells, direct hydrazine fuel cells (DHFCs) are of particular interest, especially due to their high theoretical cell voltages and clean emission. However, DHFCs currently use noble‐metal‐based electrocatalysts, and the scarcity and high cost of noble metals are hindering these fuel cells from finding large‐scale practical applications. In order to replace noble‐metal‐based electrocatalysts with sustainable ones and help DHFCs become widely usable, great efforts are being made to develop stable heteroatom (e.g., B, N, O, P and S)‐doped carbon electrocatalysts, the activities of which are comparable to, or better than, those of noble metals. Here, the recent research progress and the advancements made on the development of heteroatom‐doped carbon materials, their general properties, their electrocatalytic activities toward the HzOR, and their dopant‐ and structure‐related electrocatalytic properties for the HzOR are summarized. Perspectives on the different directions that the research endeavors in this field need to take in the future and the challenges associated with DHFCs are included.



https://ift.tt/2PzOrSE

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.