Imprinted genes are expressed from one parental allele and regulated by differential DNA methylation at imprinting control regions (ICRs). ICRs are reprogrammed in the germline through erasure and re-establishment of DNA methylation. Although much is known about DNA methylation establishment, DNA demethylation is less well understood. Recently, the Ten-Eleven Translocation proteins (TET1-3) have been shown to initiate DNA demethylation, with Tet1–/– mice exhibiting aberrant levels of imprinted gene expression and ICR methylation. Nevertheless, the role of TET1 in demethylating ICRs in the female germline and in controlling allele-specific expression remains unknown. Here, we examined ICR-specific DNA methylation in Tet1–/– germ cells and ascertained whether abnormal ICR methylation impacted imprinted gene expression in F1 hybrid somatic tissues derived from Tet1–/– eggs or sperm. We show that Tet1 deficiency is associated with hypermethylation of a subset of ICRs in germ cells. Moreover, ICRs with defective germline reprogramming exhibit aberrant DNA methylation and biallelic expression of linked imprinted genes in somatic tissues. Thus, we define a discrete set of genomic regions that require TET1 for germline reprogramming and discuss mechanisms for stochastic imprinting defects.
https://ift.tt/2IOQtqh
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.