Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 1 Μαρτίου 2018

Using Unsupervised Machine Learning to Identify Subgroups Among Home Health Patients With Heart Failure Using Telehealth

This study explored the use of unsupervised machine learning to identify subgroups of patients with heart failure who used telehealth services in the home health setting, and examined intercluster differences for patient characteristics related to medical history, symptoms, medications, psychosocial assessments, and healthcare utilization. Using a feature selection algorithm, we selected seven variables from 557 patients for clustering. We tested three clustering techniques: hierarchical, k-means, and partitioning around medoids. Hierarchical clustering was identified as the best technique using internal validation methods. Intercluster differences among patient characteristics and outcomes were assessed with either X2 test or one-way analysis of variance. Ranging in size from 153 to 233 patients, three clusters displayed patterns that differed significantly (P

http://ift.tt/2FKCKkc

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.