Abstract
With an indenoindene core, a new thieno[3,4-b]thiophene-based small-molecule electron acceptor, 2,2′-((2Z,2′Z)-((6,6′-(5,5,10,10-tetrakis(2-ethylhexyl)-5,10-dihydroindeno[2,1-a]indene-2,7-diyl)bis(2-octylthieno[3,4-b]thiophene-6,4-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (NITI), is successfully designed and synthesized. Compared with 12-π-electron fluorene, a carbon-bridged biphenylene with an axial symmetry, indenoindene, a carbon-bridged E-stilbene with a centrosymmetry, shows elongated π-conjugation with 14 π-electrons and one more sp3 carbon bridge, which may increase the tunability of electronic structure and film morphology. Despite its twisted molecular framework, NITI shows a low optical bandgap of 1.49 eV in thin film and a high molar extinction coefficient of 1.90 × 105m−1 cm−1 in solution. By matching NITI with a large-bandgap polymer donor, an extraordinary power conversion efficiency of 12.74% is achieved, which is among the best performance so far reported for fullerene-free organic photovoltaics and is inspiring for the design of new electron acceptors.
A thieno[3,4-b]thiophene-based electron acceptor, NITI, featuring a 14-π-electron indenoindene core is designed and synthesized. Despite its twisted molecular geometry, NITI shows a low optical bandgap and a high molar extinction coefficient. By matching NITI with a large-bandgap polymer donor, an extraordinary power conversion efficiency of 12.74% is achieved, which represents an exciting progress in the design of new electron acceptors.
http://ift.tt/2xl8xXP
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.