If a turbine loses its electrical load, it will rotate freely and increase speed, eventually achieving that rotational speed which produces zero net torque. This is known as a runaway situation. Unlike many other types of turbine, a marine current turbine will typically overshoot the final runaway speed before slowing down and settling at the runaway speed. Since the hydrodynamic forces acting on the turbine are dependent on rotational speed and acceleration, turbine behaviour during runaway becomes important for load analyses during turbine design. In this article, we consider analytical and numerical models of marine current turbine runaway behaviour in one dimension. The analytical model is found not to capture the overshoot phenomenon, while still providing useful estimates of acceleration at the onset of runaway. The numerical model incorporates turbine wake build-up and predicts a rotational speed overshoot. The predictions of the models are compared against measurements of runaway of a marine current turbine. The models are also used to recreate previously-published results for a tidal turbine and applied to a wind turbine. It is found that both models provide reasonable estimates of maximum accelerations. The numerical model is found to capture the speed overshoot well.
from #Medicine via ola Kala on Inoreader http://ift.tt/1VNkvyT
via IFTTT
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
-
▼
Απριλίου
(500)
-
▼
Απρ 25
(50)
- Inorganics, Vol. 4, Pages 10: Adsorption of Water ...
- Metals, Vol. 6, Pages 97: Erratum: Wally, Z.J.; va...
- Micromachines, Vol. 7, Pages 75: Quasi-Optical Ter...
- Cells, Vol. 5, Pages 20: Role of Intermediate Fila...
- Elevated serum ferritin is associated with increas...
- Comparison of clinical efficacy and renal safety o...
- Potential role of the microbiome in Barrett’s esop...
- Benchmarking trial between France and Australia co...
- Role of percutaneous abscess drainage in the manag...
- Exploring hepatitis from the perspective of Irania...
- Does gastroesophageal reflux increase chronic obst...
- Mucosal pathobiology and molecular signature of ep...
- Clinicopathological characteristics of cancer asso...
- Similarities and differences among eosinophilic es...
- Molecular detection of H. pylori using adherent ga...
- Adverse events after radiofrequency ablation in pa...
- Ulcerative colitis patients With Clostridium diffi...
- Effect and safety of daclatasvir-asunaprevir combi...
- Effects of daily telephone-based re-education befo...
- ACG Clinical Guideline: Diagnosis, treatment, and ...
- Treatment with oxidized phospholipids directly inh...
- Hepatitis C virus resistance to direct-acting anti...
- Early nasojejunal tube feeding versus nil-by-mouth...
- An international consensus report on a new algorit...
- Insights into the morphology of symbiotic shrimp e...
- Nutrient uplift in a cyclonic eddy increases diver...
- Elevational variation in body-temperature response...
- Watch out where you sleep: nocturnal sleeping beha...
- PKC in motorneurons underlies self-learning, a for...
- Development of a stem taper equation and modelling...
- Ectopic expression of Jatropha curcas APETALA1 (Jc...
- Diversity improves performance in excitable networks
- GoPros™ as an underwater photogrammetry tool for c...
- Viruses, Vol. 8, Pages 117: Glutamic Acid Residues...
- Atmosphere, Vol. 7, Pages 62: Examining the Impact...
- Animals, Vol. 6, Pages 26: Cecil: A Moment or a Mo...
- Viruses, Vol. 8, Pages 107: Development of a Tripl...
- Toxins, Vol. 8, Pages 121: Dynamic Duo—The Salmone...
- Energies, Vol. 9, Pages 314: Economic Impact of In...
- Energies, Vol. 9, Pages 317: Power Production Loss...
- Energies, Vol. 9, Pages 311: Optimal Day-Ahead Sch...
- Energies, Vol. 9, Pages 312: Comparison of Dissolv...
- JCM, Vol. 5, Pages 49: Treatment of Established St...
- Nitric oxide synthase and changes in oxidative str...
- Elevated yolk progesterone moderates prenatal hear...
- Energies, Vol. 9, Pages 316: Solar Hydrogen Produc...
- Toxins, Vol. 8, Pages 121: Dynamic Duo—The Salmone...
- Biosensors, Vol. 6, Pages 18: Current-Induced Tran...
- Energies, Vol. 9, Pages 309: One-Dimensional Model...
- Micromachines, Vol. 7, Pages 73: Influence of Geom...
-
▼
Απρ 25
(50)
- ► Φεβρουαρίου (793)
Αναζήτηση αυτού του ιστολογίου
Δευτέρα 25 Απριλίου 2016
Energies, Vol. 9, Pages 309: One-Dimensional Modelling of Marine Current Turbine Runaway Behaviour
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.